Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 1 doi: 10.15302/J-ENG-2015007

Architecture and Software Design for a Service Robot in an Elderly-Care Scenario

Computer Science Department, University of Hamburg, Hamburg D-22527, Germany

Received: 2015-03-11 Revised: 2015-03-20 Accepted: 2015-03-25 Available online: 2015-03-31

Next Previous

Abstract

Systems for ambient assisted living (AAL) that integrate service robots with sensor networks and user monitoring can help elderly people with their daily activities, allowing them to stay in their homes and live active lives for as long as possible. In this paper, we outline the AAL system currently developed in the European project Robot-Era, and describe the engineering aspects and the service-oriented software architecture of the domestic robot, a service robot with advanced manipulation capabilities. Based on the robot operating system (ROS) middleware, our software integrates a large set of advanced algorithms for navigation, perception, and manipulation. In tests with real end users, the performance and acceptability of the platform are evaluated.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

References

[ 1 ] I. Conrad, S. Glende, L. Krezdorn, L. Trieste, G. Turchetti. D9.4, Second report on services, business and marketing models for Robot-Era services, project report, 2015, www.robot-era.eu

[ 2 ] F. Cavallo, M. Aquilano, M. C. Carrozza, P. Dario. Robot-era project: The vision of 3D service robotics. Gerontechnology, 2012, 11(2): 364

[ 3 ] F. Marcellini, Report on the robotic services analysis with respect to elderly users, project report, 2012, www.robot-era.eu

[ 4 ] N. J. Nilsson. Shakey the Robot (Technical Note 323). Menlo Park, California: SRI International, Artificial Intelligence Center, 1984

[ 5 ] R. Brooks. A robust layered control system for a mobile robot. IEEE J. Robot. Autom., 1986, 2(1): 14–23

[ 6 ] T. H. J. Collett, B. A. MacDonald, B. P. Gerkey. Player 2.0: Toward a practical robot programming framework. In: Proceedings of Australasian Conference on Robotics and Automation (ACRA 05). IEEE, 2005: 1–9

[ 7 ] G. Metta, P. Fitzpatrick, L. Natale. YARP: Yet another robot platform. Int. J. Adv. Robot. Syst., 2006, 3(1): 43–48

[ 8 ] M. Quigley, ROS: An open-source Robot Operating System. In: International Conference on Robotics and Automation (ICRA) Workshop on Open-Source Software, 2009

[ 9 ] E. Einhorn, T. Langner, R. Stricker, C. Martin, H. M. Gross. MIRA-middleware for robotic applications. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), 2012: 2591–2598

[10] R. D. Schraft, J. Neugebauer, C. Schaeffer, T. May. Care-O-bot®: Ein technisches Hilfssystem für unterstützungs- und pflegebedürftige Personen im häuslichen Bereich. In: H. Wörn, R. Dillmann, D. Henrich, eds. Autonome Mobile Systeme 14. Berlin, Heidelberg: Springer, 1998: 234–244

[11] M. Hans, B. Graf. Robotic home assistant Care-O-bot II. In: E. Prassler, , eds. Advances in Human-Robot Interaction. Berlin, Heidelberg: Springer, 2004: 371–384

[12] C. Parlitz, M. Hägele, P. Klein, J. Seifert, K. Dautenhahn. Caro-O-bot 3—Rationale for human-robot interaction design. In: Proceedings of 39th International Symposium on Robotics (ISR), 2008: 275–280

[13] M. Hans, W. Baum. Concept of a hybrid architecture for Care-O-bot. In: Proceedings of 10th IEEE International Workshop on Robot and Human Interactive Communication. IEEE, 2001: 407–411

[14] T. Morita, H. Iwata, S. Sugano. Development of human symbiotic robot: WENDY. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, vol. 4. IEEE, 1999: 3183–3188

[15] Willow Garage Inc. Robot for research and innovation. https://www.willowgarage.com/pages/pr2/overview

[16] S. Cousins. ROS on the PR2 [ROS Topics]. Robot. Autom. Mag., IEEE, 2010, 17(3): 23–25

[17] A. Hermann, Hardware and software architecture of the bimanual mobile manipulation robot HoLLiE and its actuated upper body. In: Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2013: 286–292

[18] MetraLabs GmbH. Scitos G5 mobile platform. metralabs.com/index.php?option=com_content&view=article&id=70&Itemid=64

[19] F. Cavallo. Improving domiciliary robotic services by integrating the ASTRO robot in an AmI infrastructure. In: F. Röhrbein, G. Veiga, C. Natale, eds. Gearing Up and Accelerating Cross—Fertilization between Academic and Industrial Robotics Research in Europe. Springer, 2014: 267–282

[20] Schunk Gmbh & Co. KG. Powerball lightweight arm LWA 4P. http://mobile.schunk-microsite.com/en/produkte/produkte/powerball-lightweight-arm-lwa-4p.html

[21] Kinova Robotics, Kinova Jaco Research Edition. kinovarobotics.com/products/jaco-researchedition/

[22] Schunk Gmbh & Co. KG. Dextrous lightweight arm LWA 4D. http://mobile.schunk-microsite.com/en/produkte/produkte/dextrous-lightweight-arm-lwa-4d.html

[23] BionicRobotics GmbH. Bionic robotics: Biorob arm. http://www.bionic-robotics.de/en/products/biorob-arm.html

[24] Universal Robots. UR5 arm. www.universal-robots.com/GB/Products/

[25] V. Maheu, J. Frappier, P. S. Archambault, F. Routhier. Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with upper-extremity disabilities. In: Proceedings of 2011 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE, 2011: 1–5

[26] A. Saffiotti, M. Broxvall. PEIS ecologies: Ambient intelligence meets autonomous robotics. In: Proceedings of the International Conference on Smart Objects and Ambient Intelligence, 2005: 277–281

[27] M. Broxvall, M. Gritti, A. Saffiotti, B. S. Beo, Y. J. Cho. PEIS ecology: Integrating robots into smart environments. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation (ICRA), 2006: 212–218

[28] M. Di Rocco, A planner for ambient assisted living: From high-level reasoning to low-level robot execution and back. In: AAAI Spring Symposium “Qualitative Representations for Robots”, 2014: 10–17

[29] N. Hendrich, H. Bistry, B. Adler, J. Zhang. User-driven software design for an elderly care service robot. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, 2014: 142–149

[30] I. Sucan. Universal robot description format. http://wiki.ros.org/urdf

[31] E. Marder-Eppstein, V. Pradeep. ROS actionlib. http://wiki.ros.org/actionlib

[32] D. G. Lowe. Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE, 1999: 1150–1157

[33] E. Olson. AprilTag: A robust and flexible visual fiducial system. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2011: 3400–3407

[34] J. R. Lewis, J. Sauro. The factor structure of the system usability scale. In: M. Kurosu, ed. Human Centered Design. Berlin, Heidelberg: Springer, 2009: 94–103

[35] S. McLellan, A. Muddimer, S. C. Peres. The effect of experience on System Usability Scale ratings. J. Usability Stud., 2012, 7(2): 56–67

[36] F. Cavallo, D8.2 Report on results obtained in the first cycle of the Robot-Era experimentation, project report, 2014. www.robot-era.eu

[37] F. Pecora, D2.8 Second report on the S/T requirements of the Robot-Era components, project report, 2015. www.robot-era.eu

Related Research