Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 1 doi: 10.15302/J-ENG-2015015

3D Photo-Fabrication for Tissue Engineering and Drug Delivery

1 Centre for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, Marinha Grande 2430-028, Portugal
2 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto 4200-393, Portugal
3 Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto, Porto 4150-180, Portugal
4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
5 School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
6 Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK

Received: 2015-03-05 Revised: 2015-03-25 Accepted: 2015-03-25 Available online: 2015-03-31

Next Previous

Abstract

The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

References

[ 1 ] F. P. W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci., 2012, 37(8): 1079–1104 link1

[ 2 ] A. Ranga, M. P. Lutolf. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr. Opin. Cell Biol., 2012, 24(2): 236–244 link1

[ 3 ] A. Khademhosseini, R. Langer, J. Borenstein, J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A., 2006, 103(8): 2480–2487 link1

[ 4 ] R. S. Tuan, G. Boland, R. Tuli. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther., 2003, 5(1): 32–45

[ 5 ] D. J. Newman, G. M. Cragg. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3): 311–335 link1

[ 6 ] P. X. Ma. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev., 2008, 60(2): 184–198 link1

[ 7 ] R. F. Pereira, C. C. Barrias, P. L. Granja, P. J. Bartolo. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond), 2013, 8(4): 603–621 link1

[ 8 ] R. Passier, L. W. van Laake, C. L. Mummery. Stem-cell-based therapy and lessons from the heart. Nature, 2008, 453(7193): 322–329 link1

[ 9 ] R. S. Kirsner, W. A. Marston, R. J. Snyder, T. D. Lee, D. I. Cargill, H. B. Slade. Spray-applied cell therapy with human allogeneic fibroblasts and keratinocytes for the treatment of chronic venous leg ulcers: A phase 2, multicentre, double-blind, randomised, placebo-controlled trial. Lancet, 2012, 380(9846): 977–985 link1

[10] P. J. Bártolo, C. K. Chua, H. A. Almeida, S. M. Chou, A. S. C. Lim. Biomanufacturing for tissue engineering: Present and future trends. Virtual Phys. Prototyp., 2009, 4(4): 203–216 link1

[11] D. W. Hutmacher. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21(24): 2529–2543 link1

[12] D. Puppi, F. Chiellini, A. M. Piras, E. Chiellini. Polymeric materials for bone and cartilage repair. Prog. Polym. Sci., 2010, 35(4): 403–440 link1

[13] H. Cao, N. Kuboyama. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone, 2010, 46(2): 386–395 link1

[14] N. T. Khanarian, N. M. Haney, R. A. Burga, H. H. Lu. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials, 2012, 33(21): 5247–5258 link1

[15] F. P. W. Melchels, The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials, 2011, 32(11): 2878–2884 link1

[16] J. W. Lee, K. S. Kang, S. H. Lee, J. Y. Kim, B. K. Lee, D. W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials, 2011, 32(3): 744–752 link1

[17] K. Kim, D. Dean, J. Wallace, R. Breithaupt, A. G. Mikos, J. P. Fisher. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials, 2011, 32(15): 3750–3763 link1

[18] P. Bajaj, R. M. Schweller, A. Khademhosseini, J. L. West, R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng., 2014, 16(1): 247–276 link1

[19] R. F. Pereira, P. J. Bártolo. Recent advances in additive biomanufacturing. In: S. H. Masood, ed. Comprehensive Materials Processing, Volume 10: Advances in Additive Manufacturing and Tooling. Oxford: Elsevier, 2014: 265–284

[20] V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald. Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30(12): 2164–2174 link1

[21] J. W. Nichol, A. Khademhosseini. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter, 2009, 5(7): 1312–1319 link1

[22] S. V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8): 773–785 link1

[23] Y. B. Lee, Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol., 2010, 223(2): 645–652 link1

[24] M. P. Lutolf. Materials science: Cell environments programmed with light. Nature, 2012, 482(7386): 477–478 link1

[25] K. T. Nguyen, J. L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002, 23(22): 4307–4314 link1

[26] I. Mironi-Harpaz, D. Y. Wang, S. Venkatraman, D. Seliktar. Photopolymerization of cell-encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity. Acta Biomater., 2012, 8(5): 1838–1848 link1

[27] C. A. DeForest, B. D. Polizzotti, K. S. Anseth. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater., 2009, 8(8): 659–664 link1

[28] K. A. Mosiewicz, In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater., 2013, 12(11): 1072–1078 link1

[29] R. F. Pereira, P. J. Bártolo. Photopolymerizable hydrogels in regenerative medicine and drug delivery. In: Hot Topics in Biomaterials. London: Future Science Ltd., 2014: 6–28

[30] M. A. Azagarsamy, K. S. Anseth. Bioorthogonal click chemistry: An indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett., 2013, 2(1): 5–9 link1

[31] M. K. Nguyen, E. Alsberg. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci., 2014, 39(7): 1235–1265 link1

[32] K. M. C. Tsang, Facile one-step micropatterning using photodegradable gelatin hydrogels for improved cardiomyocyte organization and alignment. Adv. Funct. Mater., 2015, 25(6): 977–986 link1

[33] F. Guillemot, High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater., 2010, 6(7): 2494–2500 link1

[34] C. C. Lin, C. S. Ki, H. Shih. Thiol-norbornene photo-click hydrogels for tissue engineering applications. J. Appl. Polym. Sci., 2015, 132(8): 41563

[35] N. Annabi, 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 2014, 26(1): 85–124 link1

[36] S. B. Anderson, C. C. Lin, D. V. Kuntzler, K. S. Anseth. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials, 2011, 32(14): 3564–3574 link1

[37] F. R. Maia, K. B. Fonseca, G. Rodrigues, P. L. Granja, C. C. Barrias. Matrix-driven formation of mesenchymal stem cell-extracellular matrix microtissues on soft alginate hydrogels. Acta Biomater., 2014, 10(7): 3197–3208 link1

[38] M. W. Tibbitt, A. M. Kloxin, L. Sawicki, K. S. Anseth. Mechanical properties and degradation of chain and step polymerized photodegradable hydrogels. Macromolecules, 2013, 46(7): 2785–2792 link1

[39] C. E. Hoyle, C. N. Bowman. Thiol-ene click chemistry. Angew. Chem. Int. Ed. Engl., 2010, 49(9): 1540–1573

[40] Y. Jiang, J. Chen, C. Deng, E. J. Suuronen, Z. Zhong. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18): 4969–4985 link1

[41] M. A. Tasdelen, Y. Yagci. Light-induced click reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(23): 5930–5938

[42] K. A. Kyburz, K. S. Anseth. Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density. Acta Biomater., 2013, 9(5): 6381–6392 link1

[43] H. Shih, C. C. Lin. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol. Rapid Commun., 2013, 34(3): 269–273 link1

[44] B. D. Fairbanks, M. P. Schwartz, A. E. Halevi, C. R. Nuttelman, C. N. Bowman, K. S. Anseth. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater., 2009, 21(48): 5005–5010 link1

[45] P. J. Bártolo. Stereolithographic processes. In: P. J. Bártolo, ed. Stereolithography. New York: Springer US, 2011: 1–36

[46] N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, W. J. Dhert. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, 2009, 30(3): 344–353 link1

[47] A. D. Rouillard, Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng. Part C Methods, 2011, 17(2): 173–179

[48] S. J. Bryant, C. R. Nuttelman, K. S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed., 2000, 11(5): 439–457

[49] C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, J. H. Elisseeff. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 2005, 26(11): 1211–1218 link1

[50] T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35(1): 49–62 link1

[51] B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, K. S. Anseth. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility. Biomaterials, 2009, 30(35): 6702–6707 link1

[52] Z. Li, Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels. RSC Adv., 2013, 3(36): 15939–15946 link1

[53] J. Hu, Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater., 2012, 8(5): 1730–1738 link1

[54] J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31(21): 5536–5544 link1

[55] W. M. Gramlich, I. L. Kim, J. A. Burdick. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials, 2013, 34(38): 9803–9811 link1

[56] A. Fu, K. Gwon, M. Kim, G. Tae, J. A. Kornfield. Visible-light-initiated thiol-acrylate photopolymerization of heparin-based hydrogels. Biomacromolecules, 2015, 16(2): 497–506 link1

[57] A. K. Nguyen, Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen. Med., 2013, 8(6): 725–738 link1

[58] H. Park, B. Choi, J. Hu, M. Lee. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater., 2013, 9(1): 4779–4786 link1

[59] P. M. Kharkar, K. L. Kiick, A. M. Kloxin. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev., 2013, 42(17): 7335–7372

[60] J. A. Yang, J. Yeom, B. W. Hwang, A. S. Hoffman, S. K. Hahn. In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci., 2014, 39(12): 1973–1986 link1

[61] M. P. Lutolf, J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol., 2005, 23(1): 47–55 link1

[62] L. Fertier, The use of renewable feedstock in UV-curable materials–A new age for polymers and green chemistry. Prog. Polym. Sci., 2013, 38(6): 932–962 link1

[63] C. Heller, Vinylcarbonates and vinylcarbamates: Biocompatible monomers for radical photopolymerization. J. Polym. Sci. A Polym. Chem., 2011, 49(3): 650–661

[64] B. Husár, R. Liska. Vinyl carbonates, vinyl carbamates, and related monomers: Synthesis, polymerization, and application. Chem. Soc. Rev., 2012, 41(6): 2395–2405

[65] C. Heller, M. Schwentenwein, G. Russmueller, F. Varga, J. Stampfl, R. Liska. Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J. Polym. Sci. A Polym. Chem., 2009, 47(24): 6941–6954

[66] J. F. Almeida, P. Ferreira, A. Lopes, M. H. Gil. Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int. J. Biol. Macromol., 2011, 49(5): 948–954 link1

[67] O. Jeon, C. Powell, L. D. Solorio, M. D. Krebs, E. Alsberg. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release, 2011, 154(3): 258–266 link1

[68] S. Sahoo, C. Chung, S. Khetan, J. A. Burdick. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules, 2008, 9(4): 1088–1092 link1

[69] S. A. Bencherif, A. Srinivasan, F. Horkay, J. O. Hollinger, K. Matyjaszewski, N. R. Washburn. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials, 2008, 29(12): 1739–1749 link1

[70] C. S. Ki, H. Shih, C. C. Lin. Facile preparation of photodegradable hydrogels by photopolymerization. Polymer (Guildf.), 2013, 54(8): 2115–2122 link1

[71] Q. Guo, X. Wang, M. W. Tibbitt, K. S. Anseth, D. J. Montell, J. H. Elisseeff. Light activated cell migration in synthetic extracellular matrices. Biomaterials, 2012, 33(32): 8040–8046 link1

[72] M. A. Azagarsamy, D. D. McKinnon, D. L. Alge, K. S. Anseth. Coumarin-based photodegradable hydrogel: Design, synthesis, gelation, and degradation kinetics. ACS Macro Letters, 2014, 3(6): 515–519 link1

[73] M. A. Azagarsamy, K. S. Anseth. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. Engl., 2013, 52(51): 13803–13807

[74] N. Annabi, S. M. Mithieux, P. Zorlutuna, G. Camci-Unal, A. S. Weiss, A. Khademhosseini. Engineered cell-laden human protein-based elastomer. Biomaterials, 2013, 34(22): 5496–5505 link1

[75] M. S. Bae, Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials, 2011, 32(32): 8161–8171 link1

[76] H. Zhang, Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules, 2013, 14(5): 1299–1310 link1

[77] Z. Mũnoz, H. Shih, C. C. Lin. Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation. Biomaterials Science, 2014, 2(8): 1063–1072 link1

[78] K. Peng, Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7(10): 4881–4887 link1

[79] R. F. Pereira, H. A. Almeida, P. J. Bártolo. Biofabrication of hydrogel constructs. In: J. Coelho, ed. Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Dordrecht: Springer Netherlands, 2013: 225–254

[80] N. R. Schiele, D. T. Corr, Y. Huang, N. A. Raof, Y. Xie, D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication, 2010, 2(3): 032001 link1

[81] F. P. W. Melchels, J. Feijen, D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121–6130 link1

[82] R. F. Pereira, P. J. Bártolo. Photocrosslinkable materials for the fabrication of tissue-engineered constructs by stereolithography. In: P. R. Fernandes, P. J. Bártolo, eds. Tissue Engineering. Dordrecht: Springer Netherlands, 2014: 149–178

[83] J. W. Choi, R. Wicker, S. H. Lee, K. H. Choi, C. S. Ha, I. Chung. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J. Mater. Process. Technol., 2009, 209(15−16): 5494–5503 link1

[84] J. Torgersen, X. H. Qin, Z. Li, A. Ovsianikov, R. Liska, J. Stampfl. Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. Adv. Funct. Mater., 2013, 23(36): 4542–4554 link1

[85] P. J. Bártolo, G. Mitchell. Stereo-thermal-lithography: A new principle for rapid prototyping. Rapid Prototyping J., 2003, 9(3): 150–156 link1

[86] T. Patrício, R. Pereira, L. Oliveira, P. Bártolo. Polyethylene glycol and polyethylene glycol/hydroxyapatite constructs produced through stereo-thermal lithography. Adv. Mater. Res., 2013, 749: 87–92

[87] P. Bartolo, Biomedical production of implants by additive electro-chemical and physical processes. CIRP Annals—Manuf. Technol., 2012, 61(2): 635–655

[88] Y. J. Seol, D. Y. Park, J. Y. Park, S. W. Kim, S. J. Park, D. W. Cho. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol. Bioeng., 2013, 110(5): 1444–1455 link1

[89] J. R. Tumbleston, Continuous liquid interface production of 3D objects. Science, 2015, 347(6228), 1349–1352 link1

[90] S. J. Leigh, Fabrication of 3-dimensional cellular constructs via microstereolithography using a simple, three-component, poly(ethylene glycol) acrylate-based system. Biomacromolecules, 2013, 14(1): 186–192 link1

[91] A. P. Zhang, Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater., 2012, 24(31): 4266–4270 link1

[92] A. Ovsianikov, Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules, 2011, 12(4): 851–858 link1

[93] K. W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, L. Lu. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: Effects of resin formulations and laser parameters. Biomacromolecules, 2007, 8(4): 1077–1084 link1

[94] L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. W. Grijpma, J. V. Seppälä. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater., 2011, 7(11): 3850–3856 link1

[95] F. P. W. Melchels, J. Feijen, D. W. Grijpma. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 2009, 30(23−24): 3801–3809 link1

[96] S. Schüller-Ravoo, S. M. Teixeira, J. Feijen, D. W. Grijpma, A. A. Poot. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol. Biosci., 2013, 13(12): 1711–1719 link1

[97] J. W. Lee, P. X. Lan, B. Kim, G. Lim, D. W. Cho. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 87B(1): 1–9 link1

[98] J. Jansen, F. P. Melchels, D. W. Grijpma, J. Feijen. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules, 2009, 10(2): 214–220 link1

[99] T. M. Seck, F. P. Melchels, J. Feijen, D. W. Grijpma. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins. J. Control. Release, 2010, 148(1): 34–41 link1

[100] K. Arcaute, B. Mann, R. Wicker. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater., 2010, 6(3): 1047–1054 link1

[101] F. A. M. M. Gonçalves, 3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithography. Biofabrication, 2014, 6(3): 035024 link1

[102] M. Dadsetan, Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater., 2015 (in press)

[103] J. H. Shin, J. W. Lee, J. H. Jung, D. W. Cho, G. Lim. Evaluation of cell proliferation and differentiation on a poly(propylene fumarate) 3D scaffold treated with functional peptides. J. Mater. Sci., 2011, 46(15): 5282–5287

[104] L. Elomaa, Y. Kang, J. V. Seppälä, Y. Yang. Biodegradable photocrosslinkable poly(depsipeptide-co-ε-caprolactone) for tissue engineering: Synthesis, characterization, and in vitro evaluation. J. Polym. Sci. A Polym. Chem., 2014, 52(23): 3307–3315

[105] R. Gauvin, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012, 33(15): 3824–3834 link1

[106] F. Scalera, C. Esposito Corcione, F. Montagna, A. Sannino, A. Maffezzoli. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceram. Int., 2014, 40(10, Part A): 15455–15462 link1

[107] L. Elomaa, A. Kokkari, T. Närhi, J. V. Seppälä. Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos. Sci. Technol., 2013, 74: 99–106 link1

[108] A. Ronca, L. Ambrosio, D. W. Grijpma. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater., 2013, 9(4): 5989–5996 link1

[109] F. Claeyssens, Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir, 2009, 25(5): 3219–3223 link1

[110] O. Kufelt, A. El-Tamer, C. Sehring, S. Schlie-Wolter, B. N. Chichkov. Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules, 2014, 15(2): 650–659 link1

[111] V. Melissinaki, Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication, 2011, 3(4): 045005 link1

[112] M. T. Raimondi, Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater., 2013, 9(1): 4579–4584 link1

[113] J. W. Lee, K. J. Kim, K. S. Kang, S. Chen, J. W. Rhie, D. W. Cho. Development of a bone reconstruction technique using a solid free-form fabrication (SFF)-based drug releasing scaffold and adipose-derived stem cells. J. Biomed. Mater. Res. A, 2013, 101A(7): 1865–1875

[114] J. Jansen, M. J. Boerakker, J. Heuts, J. Feijen, D. W. Grijpma. Rapid photo-crosslinking of fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers for drug delivery applications. J. Control. Release, 2010, 147(1): 54–61 link1

[115] S. D. Gittard, Two photon polymerization-micromolding of polyethylene glycol-gentamicin sulfate microneedles. Adv. Eng. Mater., 2010, 12(4): B77–B82

[116] S. D. Gittard, Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. JOM, 2011, 63(6): 59–68

[117] Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A, 2006, 77A(2): 396–405

[118] P. Zorlutuna, J. H. Jeong, H. Kong, R. Bashir. Stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv. Funct. Mater., 2011, 21(19): 3642–3651 link1

[119] V. Chan, P. Zorlutuna, J. H. Jeong, H. Kong, R. Bashir. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip, 2010, 10(16): 2062–2070 link1

[120] H. Lin, Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 2013, 34(2): 331–339 link1

[121] A. Ovsianikov, Laser photofabrication of cell-containing hydrogel constructs. Langmuir, 2014, 30(13): 3787–3794 link1

[122] A. Ovsianikov, Laser printing of cells into 3D scaffolds. Biofabrication, 2010, 2(1): 014104 link1

[123] Y. Nahmias, D. J. Odde. Micropatterning of living cells by laser-guided direct writing: Application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc., 2006, 1(5): 2288–2296 link1

[124] B. R. Ringeisen, C. M. Othon, J. A. Barron, P. K. Wu, B. J. Spargo. The evolution of cell printing. In: U. Meyer, J. Handschel, H. P. Wiesmann, T. Meyer, eds. Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin: Springer Berlin Heidelberg, 2009: 613–631

[125] D. J. Odde, M. J. Renn. Laser-guided direct writing of living cells. Biotechnol. Bioeng., 2000, 67(3): 312–318 link1

[126] Y. Nahmias, R. E. Schwartz, C. M. Verfaillie, D. J. Odde. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng., 2005, 92(2): 129–136 link1

[127] F. Guillemot, A. Souquet, S. Catros, B. Guillotin. Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond), 2010, 5(3): 507–515 link1

[128] S. Catros, B. Guillotin, M. Bačáková, J. C. Fricain, F. Guillemot. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Appl. Surf. Sci., 2011, 257(12): 5142–5147 link1

[129] J. A. Barron, D. B. Krizman, B. R. Ringeisen. Laser printing of single cells: Statistical analysis, cell viability, and stress. Ann. Biomed. Eng., 2005, 33(2): 121–130 link1

[130] Y. Lin, G. Huang, Y. Huang, T. R. Jeremy Tzeng, D. Chrisey. Effect of laser fluence in laser-assisted direct writing of human colon cancer cell. Rapid Prototyping J., 2010, 16(3): 202–208 link1

[131] B. C. Riggs, Matrix-assisted pulsed laser methods for biofabrication. MRS Bull., 2011, 36(12): 1043–1050 link1

[132] N. A. Raof, N. R. Schiele, Y. Xie, D. B. Chrisey, D. T. Corr. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials, 2011, 32(7): 1802–1808 link1

[133] J. A. Barron, B. R. Ringeisen, H. Kim, B. J. Spargo, D. B. Chrisey. Application of laser printing to mammalian cells. Thin Solid Films, 2004, 453−454: 383–387

[134] T. M. Patz, Three-dimensional direct writing of B35 neuronal cells. J. Biomed. Mater. Res. B Appl. Biomater., 2006, 78B(1): 124–130 link1

[135] N. R. Schiele, D. B. Chrisey, D. T. Corr. Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng. Part C Methods, 2011, 17(3): 289–298

[136] N. R. Schiele, Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications. Appl. Surf. Sci., 2009, 255(10): 5444–5447 link1

[137] A. Doraiswamy, R. J. Narayan, M. L. Harris, S. B. Qadri, R. Modi, D. B. Chrisey. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J. Biomed. Mater. Res. A, 2007, 80A(3): 635–643

[138] S. Catros, Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 2011, 3(2): 025001 link1

[139] M. Gruene, Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng. Part C Methods, 2011, 17(10): 973–982

[140] L. Koch, Skin tissue generation by laser cell printing. Biotechnol. Bioeng., 2012, 109(7): 1855–1863 link1

[141] P. K. Wu, B. R. Ringeisen. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication, 2010, 2(1): 014111 link1

[142] S. Michael, Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE, 2013, 8(3): e57741 link1

[143] V. Keriquel, In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication, 2010, 2(1): 014101 link1

[144] B. Guillotin, Laser-assisted bioprinting for tissue engineering. In: G. Forgacs, W. Sun, eds. Biofabrication. Boston: William Andrew Publishing, 2013: 95–118

[145] R. G. Wylie, S. Ahsan, Y. Aizawa, K. L. Maxwell, C. M. Morshead, M. S. Shoichet. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater., 2011, 10(10): 799–806 link1

[146] R. G. Wylie, M. S. Shoichet. Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules, 2011, 12(10): 3789–3796 link1

[147] S. H. Lee, J. J. Moon, J. L. West. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials, 2008, 29(20): 2962–2968 link1

[148] S. C. Owen, S. A. Fisher, R. Y. Tam, C. M. Nimmo, M. S. Shoichet. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir, 2013, 29(24): 7393–7400 link1

[149] K. A. Mosiewicz, L. Kolb, A. J. van der Vlies, M. P. Lutolf. Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater. Sci., 2014, 2(11): 1640–1651 link1

[150] A. T. Alsop, J. C. Pence, D. W. Weisgerber, B. A. Harley, R. C. Bailey. Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomater., 2014, 10(11): 4715–4722 link1

[151] R. J. Wade, E. J. Bassin, W. M. Gramlich, J. A. Burdick. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater., 2015, 27(8): 1356–1362 link1

[152] H. J. Lee, W. G. Koh. Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs. ACS Appl. Mater. Interfaces, 2014, 6(12): 9338–9348 link1

[153] B. V. Sridhar, N. R. Doyle, M. A. Randolph, K. S. Anseth. Covalently tethered TGF-b1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J. Biomed. Mater. Res. A, 2014, 102(12): 4464–4472

[154] G. Pasparakis, T. Manouras, P. Argitis, M. Vamvakaki. Photodegradable polymers for biotechnological applications. Macromol. Rapid Commun., 2012, 33(3): 183–198 link1

[155] M. T. Frey, Y. L. Wang. A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter, 2009, 5(9): 1918–1924 link1

[156] V. V. Ramanan, J. S. Katz, M. Guvendiren, E. R. Cohen, R. A. Marklein, J. A. Burdick. Photocleavable side groups to spatially alter hydrogel properties and cellular interactions. J. Mater. Chem., 2010, 20(40): 8920–8926

[157] D. R. Griffin, A. M. Kasko. Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc., 2012, 134(31): 13103–13107

[158] D. R. Griffin, J. T. Patterson, A. M. Kasko. Photodegradation as a mechanism for controlled drug delivery. Biotechnol. Bioeng., 2010, 107(6): 1012–1019 link1

[159] M. He, J. Li, S. Tan, R. Wang, Y. Zhang. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc., 2013, 135(50): 18718–18721

[160] C. A. DeForest, K. S. Anseth. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem., 2011, 3(12): 925–931 link1

[161] A. M. Kloxin, J. A. Benton, K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials, 2010, 31(1): 1–8 link1

[162] C. M. Kirschner, D. L. Alge, S. T. Gould, K. S. Anseth. Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv. Healthc. Mater., 2014, 3(5): 649–657 link1

[163] M. V. Tsurkan, Photopatterning of multifunctional hydrogels to direct adult neural precursor cells. Adv. Healthc. Mater., 2015, 4(4): 516–521 link1

[164] M. A. Azagarsamy, D. L. Alge, S. J. Radhakrishnan, M. W. Tibbitt, K. S. Anseth. Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules, 2012, 13(8): 2219–2224 link1

[165] M. W. Tibbitt, B. W. Han, A. M. Kloxin, K. S. Anseth. Synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J. Biomed. Mater. Res. A, 2012, 100A(7): 1647–1654

[166] C. Lv, Z. Wang, P. Wang, X. Tang. Photodegradable polyurethane self-assembled nanoparticles for photocontrollable release. Langmuir, 2012, 28(25): 9387–9394 link1

[167] J. L. Vivero-Escoto, I. I. Slowing, C. W. Wu, V. S. Lin. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc., 2009, 131(10): 3462–3463

[168] Q. Jin, F. Mitschang, S. Agarwal. Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules, 2011, 12(10): 3684–3691 link1

[169] B. Yan, J. C. Boyer, D. Habault, N. R. Branda, Y. Zhao. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc., 2012, 134(40): 16558–16561

Related Research