Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 1 doi: 10.15302/J-ENG-2015017

Scientific and Engineering Progress in CO2 Mineralization Using Industrial Waste and Natural Minerals

1 Center of CCUS and CO2 Mineralization and Utilization, Sichuan University, Chengdu 610065, China
2 College of Water Resources & Hydropower, Sichuan University, Chengdu 610065, China
3 College of Chemical Engineering, Sichuan University, Chengdu 610065, China
4 School of Chemistry, Sichuan University, Chengdu 610065, China

Received: 2015-03-11 Revised: 2015-03-20 Accepted: 2015-03-25 Available online: 2015-03-31

Next Previous

Abstract

The issues of reducing CO2 levels in the atmosphere, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenging opportunities for sustainable development in energy and the environment. The latest advances in CO2 mineralization technology involving natural minerals and industrial waste are summarized in this paper, with great emphasis on the advancement of fundamental science, economic evaluation, and engineering applications. We discuss several leading large-scale CO2 mineralization methodologies from a technical and engineering-science perspective. For each technology option, we give an overview of the technical parameters, reaction pathway, reactivity, procedural scheme, and laboratorial and pilot devices. Furthermore, we present a discussion of each technology based on experimental results and the literature. Finally, current gaps in knowledge are identified in the conclusion, and an overview of the challenges and opportunities for future research in this field is provided.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

References

[ 1 ] C. Y. Tai, W. R. Chen, S. M. Shih. Factors affecting wollastonite carbonation under CO2 supercritical conditions. AlChE J., 2006, 52(1): 292–299 link1

[ 2 ] W. Wang, X. Liu, P. Wang, Y. Zheng, M. Wang. Enhancement of CO2 mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine. Ind. Eng. Chem. Res., 2013, 52(23): 8028–8033

[ 3 ] V. Materic, S. I. Smedley. High temperature carbonation of Ca(OH)2. Ind. Eng. Chem. Res., 2011, 50(10): 5927–5932

[ 4 ] G. Grasa, J. C. Abanades, E. J. Anthony. Effect of partial carbonation on the cyclic CaO carbonation reaction. Ind. Eng. Chem. Res., 2009, 48(20): 9090–9096

[ 5 ] D. Tong, J. P. M. Trusler, D. Vega-Maza. Solubility of CO2 in aqueous solutions of CaCl2 or MgCl2 and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa. J. Chem. Eng. Data, 2013, 58(7): 2116–2124

[ 6 ] K. K. Godishala, J. S. Sangwai, N. A. Sami, K. Das. Phase stability of semiclathrate hydrates of carbon dioxide in synthetic sea water. J. Chem. Eng. Data, 2013, 58(4): 1062–1067

[ 7 ] X. Li, E. S. Boek, G. C. Maitland, J. P. M. Trusler. Interfacial tension of (brines+ CO2): CaCl2(aq), MgCl2(aq), and Na2SO4(aq) at temperatures between (343 and 423) K, pressures between (2 and 50) MPa, and molalities of (0.5 to 5) mol·kg−1. J. Chem. Eng. Data, 2012, 57(5): 1369–1375

[ 8 ] Z. Sun, M. Fan, M. Argyle. Supported monoethanolamine for CO2 separation. Ind. Eng. Chem. Res., 2011, 50(19): 11343–11349

[ 9 ] W. Chaikittisilp, R. Khunsupat, T. T. Chen, C. W. Jones. Poly (allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind. Eng. Chem. Res., 2011, 50(24): 14203–14210 link1

[10] S. Holloway, J. M. Pearce, V. L. Hards, T. Ohsumi, J. Gale. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy, 2007, 32(7): 1194–1201 link1

[11] H. Hassanzadeh, M. Pooladi-Darvish, D. W. Keith. Accelerating CO2 dissolution in saline aquifers for geological storage — Mechanistic and sensitivity studies. Energy Fuels, 2009, 23(6): 3328–3336 link1

[12] J. Zhu, et al. Thermodynamics cognizance of CCS and CCU routes for CO2 Emmission Reduction. J. Sichuan Uni. (Eng. Sci. Ed), 2013, 45(5): 1–7 (in Chinese)

[13] M. Verduyn, H. Geerlings, G. Mossel, S. Vijayakumari. Review of the various CO2 mineralization product forms. Energy Procedia, 2011, 4: 2885–2892 link1

[14] H. Tayibi, M. Choura, F. A. López, F. J. Alguacil, A. López-Delgado. Environmental impact and management of phosphogypsum. J. Environ. Manage., 2009, 90(8): 2377–2386

[15] C. Wang, H. Yue, C. Li, B. Liang, J. Zhu, H. Xie. Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium. Ind. Eng. Chem. Res., 2014, 53(19): 7971–7978

[16] H. Xie, et al. Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin. Sci. Bull., 2013, 58(1): 128–132

[17] B. Metz, O. Davidson, H. C. de Coninck, M. Loos, L. A. Meyer, eds. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2005

[18] H. Xie, Y. Wang, W. Chu, Y. Ju. Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin. Sci. Bull., 2014, 59(23): 2882–2889 link1

[19] L. Ye, et al. CO2 mineralization of activated K-feldspar+ CaCl2 slag to fix carbon and produce soluble potash salt. Ind. Eng. Chem. Res., 2014, 53(26): 10557–10565

[20] İ. Akın Altun, Y. Sert. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cement Concr. Res., 2004, 34(4): 677–680 link1

[21] H. V. M. Hamelers, O. Schaetzle, J. M. Paz-García, P. M. Biesheuvel, C. J. N. Buisman. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett., 2013, 1(1): 31–35

[22] H. Xie, et al. Generation of electricity from CO2 mineralization: Principle and realization, Sci. China Technol. Sc., 2014,57 (12): 2335–2346.

[23] K. Huang, X. Meng, G. Wang. Research progress of extracting potassium from potassium feldspar. Phosphate & Compound Fertilizer, 2011, 26(5): 16–19

[24] I. A. Munz, et al. Mechanisms and rates of plagioclase carbonation reactions. Geochim. Cosmochim. Acta, 2012, 77: 27–51 link1

Related Research