Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 2 doi: 10.15302/J-ENG-2015036

Metamaterials: Reshape and Rethink

1 Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
2 State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China

Received: 2015-06-08 Revised: 2015-06-20 Accepted: 2015-06-30 Available online: 2015-06-30

Next Previous

Abstract

Metamaterials are composite materials whose material properties (acoustic, electrical, magnetic, or optical, etc.) are determined by their constitutive structural materials, especially the unit cells. The development of metamaterials continues to redefine the boundaries of materials science. In the field of electromagnetic research and beyond, these materials offer excellent design flexibility with their customized properties and their tunability under external stimuli. In this paper, we first provide a literature review of metamaterials with a focus on the technology and its evolution. We then discuss steps in the industrialization process and share our own experience.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85(18): 3966−3969 link1

[ 2 ] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788−792 link1

[ 3 ] D. Schurig, Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977−980 link1

[ 4 ] A. Alù, N. Engheta. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A: Pure Appl. Opt., 2008, 10(9): 093002 link1

[ 5 ] A. Alù, N. Engheta. Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights. Opt. Express, 2007, 15(6): 3318−3332 link1

[ 6 ] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith. Broadband ground-plane cloak. Science, 2009, 323(5912): 366−369 link1

[ 7 ] R. M. Walser. Electromagnetic metamaterials. In: A. Lakhtakia, W. S. Weiglhofer, I. J. Hodgkinson, eds. SPIE Proceedings Vol. 4467, Complex Mediums II: Beyond Linear Isotropic Dielectrics. San Diego: SPIE Proceedings, 2001: 1−15

[ 8 ] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, M. Tanielian. Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett., 2003, 90(10): 107401 link1

[ 9 ] M. Li, N. Behdad. Frequency selective surfaces for pulsed high-power microwave applications. IEEE T. Antenn. Propag., 2013, 61(2): 677−687 link1

[10] C. H. Liu, N. Behdad. Investigating the impact of microwave breakdown on the responses of high-power microwave metamaterials. IEEE T. Plasma Sci., 2013, 41(10): 2992−3000 link1

[11] C. H. Liu, J. D. Neher, J. H. Booske, N. Behdad. Investigating the physics of simultaneous breakdown events in high-power-microwave (HPM) metamaterials with multiresonant unit cells and discrete nonlinear responses. IEEE T. Plasma Sci., 2014, 42(5): 1255−1264 link1

[12] S. Sajuyigbe, M. Ross, P. Geren, S. A. Cummer, M. H. Tanielian, D. R. Smith. Wide angle impedance matching metamaterials for waveguide-fed phased-array antennas. IET Microw. Antenna. P., 2010, 4(8): 1063−1072 link1

[13] U. Leonhardt. Optical conformal mapping. Science, 2006, 312(5781): 1777−1780 link1

[14] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780−1782 link1

[15] B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett., 2009, 103(15): 153901 link1

[16] N. Fang, H. Lee, C. Sun, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534−537 link1

[17] B. A. Munk. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons, Inc., 2005

[18] R. Mittra, C. H. Chan, T. Cwik. Techniques for analyzing frequency selective surfaces—A review. Proc. IEEE, 1988, 76(12): 1593−1615 link1

[19] R. W. Ziolkowski, A. D. Kipple. Application of double negative materials to increase the power radiated by electrically small antennas. IEEE T. Antenn. Propag., 2003, 51(10): 2626−2640 link1

[20] S. Clavijo, R. E. Diaz, W. E. McKinzie. Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas. IEEE T. Antenn. Propag., 2003, 51(10): 2678−2690 link1

[21] F. Yang, Y. Rahmat-Samii. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE T. Antenn. Propag., 2003, 51(10): 2691−2703

[22] D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, G. Tangonan. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE T. Antenn. Propag., 2003, 51(10): 2713−2722 link1

[23] F. Yang, Y. Rahmat-Samii. Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge, UK: Cambridge University Press, 2008

[24] R. W. Ziolkowski, P. Jin, C. C. Lin. Metamaterial-inspired engineering of antennas. Proc. IEEE, 2011, 99(10): 1720−1731 link1

[25] C. Caloz, T. Itoh. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Portland, OR: Wiley-IEEE Press, 2005

[26] A. Grbic, G. V. Eleftheriades. Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys., 2002, 92(10): 5930−5935 link1

[27] L. Liu, C. Caloz, T. Itoh. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett., 2002, 38(23): 1414−1416 link1

[28] R. W. Ziolkowski. Metamaterials: The early years in the USA. EPJ Appl. Metamat., 2014, 1: 5 link1

[29] C. M. Soukoulis, S. Linden, M. Wegener. Physics. Negative refractive index at optical wavelengths. Science, 2007, 315(5808): 47−49 link1

[30] C. M. Soukoulis, M. Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics, 2011, 5(9): 523−530

[31] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 2008, 7(6): 435−441 link1

[32] J. Rho, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 2010, 1(9): 143 link1

[33] G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden. Negative-index metamaterial at 780 nm wavelength. Opt. Lett., 2007, 32(1): 53−55 link1

[34] T. Hand, S. Cummer. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antenn. Wirel. Pr., 2007, 6(11): 401−404 link1

[35] H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt. Reconfigurable terahertz metamaterials. Phys. Rev. Lett., 2009, 103(14): 147401 link1

[36] B. Ozbey, O. Aktas. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express, 2011, 19(7): 5741−5752 link1

[37] T. S. Kasirga, Y. N. Ertas, M. Bayindir. Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett., 2009, 95(21): 214102 link1

[38] H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597−600 link1

[39] R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, Y. S. Kivshar. Metamaterials and metaoptics. NPG Asia Mater., 2011, 3: 100−108 link1

[40] S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, N. A. P. Nicorovici. The colours of cloaks. J. Opt., 2011, 13(2): 024014 link1

[41] M. Kadic, T. Bückmann, R. Schittny, M. Wegener. Metamaterials beyond electromagnetism. Rep. Prog. Phys., 2013, 76(12): 126501 link1

[42] K. Sato, T. Nomura, S. Matsuzawa, H. Iizuka. Metamaterial techniques for automotive applications. In: PIERS proceedings. Hangzhou, China, 2008: 1122−1125

[43] F. Fitzek, R. H. Rasshofer, E. M. Biebl. Metamaterial matching of high-permittivity coatings for 79 GHz radar sensors. In: Proceedings of 2010 European Microwave Conference (EuMC). London: Horizon House Publications Ltd., 2010: 1401−1404

[44] K. M. Palmer. Metamaterials make for a broadband breakthrough. IEEE Spectrum, 2012, 49(1): 13−14

[45] N. Kundtz. Next generation communications for next generation satellites. Microwave J., 2014, 57(8): 14

[46] K. M. Alam, A. P. Singh, R. Starko-Bowes, S. C. Bodepudi, S. Pramanik. Template-assisted synthesis of π-conjugated molecular organic nanowires in the sub-100 nm regime and device implications. Adv. Funct. Mater., 2012, 22(15): 3298−3306 link1

[47] R. Starko-Bowes, S. Pramanik. Ultrahigh density array of vertically aligned small-molecular organic nanowires on arbitrary substrates. J. Vis. Exp., 2013 (76): e50706

[48] D. J. Shelton, Strong coupling between nanoscale metamaterials and phonons. Nano Lett., 2011, 11(5): 2104−2108 link1

[49] D. Shelton. Tunable infrared metamaterials (Doctoral dissertation). Orlando, FL: University of Central Florida, 2010

[50] J. B. Pendry, D. R. Smith. Reversing light with negative refraction. Phys. Today, 2004, 57(6): 37−43

[51] A. Bhattacharya. Modeling and simulation of metamaterial-based devices for industrial applications. 2013-09-26. https://www.cst.com/Applications/Article/Simulating-Metamaterial-Based-Devices-Industry

Related Research