Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 2 doi: 10.15302/J-ENG-2015038

Bulk Glassy Alloys: Historical Development and Current Research

1 Tohoku University, Sendai 980-8577, Japan
2 International Institute of Green Materials, Josai International University, Togane 283-8555, Japan

Received: 2015-06-18 Revised: 2015-06-28 Accepted: 2015-06-30 Available online: 2015-06-30

Next Previous

Abstract

This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.

References

[ 1 ] A. Inoue, T. Masumoto, M. Hagiwara, H. S. Chen. The structural relaxation behavior of Pd48Ni32P20, Fe75Si10B15 and Co72.5Si12.5B15 amorphous alloy wire and ribbon. Scr. Metall., 1983, 17(10): 1205−1208 link1

[ 2 ] A. Inoue, T. Masumoto, H. S. Chen. Enthalpy relaxation behaviour of (Fe, Co, Ni)75Si10B15 amorphous alloys upon low temperature annealing. J. Mater. Sci., 1984, 19(12): 3953−3966 link1

[ 3 ] H. S. Chen, A. Inoue, T. Masumoto. Two-stage enthalpy relaxation behaviour of (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys upon annealing. J. Mater. Sci., 1985, 20(7): 2417−2438 link1

[ 4 ] H. S. Chen, A. Inoue. Sub-Tg enthalpy relaxation in PdNiSi alloy glasses. J. Non-Cryst. Solids, 1984, 61−62(Part 2): 805−810

[ 5 ] A. Inoue, H. S. Chen, J. T. Krause, T. Masumoto. The effects of quench rate and cold drawing on the structural relaxation and young’s modulus of an amorphous Pd77.5Cu6Si16.5 wire. J. Non-Cryst. Solids, 1984, 61−62(Part 2): 949−954

[ 6 ] H. S. Chen. Glassy metals. Rep. Prog. Phys., 1980, 43(4): 353−432 link1

[ 7 ] O. Yoshinari, M. Koiwa, A. Inoue, T. Masumoto. Hydrogen related internal friction peaks in amorphous and crystallized Pd-Cu-Si alloys. Acta Metall., 1983, 31(12): 2063−2072 link1

[ 8 ] H. S. Chen, J. T. Krause, A. Inoue, T. Masumoto. The effect of quench rate on the young’s modulus of Fe-, Co-, Ni- and Pd-based amorphous alloys. Scr. Metall., 1983, 17(12): 1413−1414 link1

[ 9 ] A. Inoue, Y. Masumoto, N. Yano, A. Kawashima, K. Hashimoto, T. Masumoto. Production of Ni-Pd-Si and Ni-Pd-P amorphous wires and their mechanical and corrosion properties. J. Mater. Sci., 1985, 20(1): 97−104 link1

[10] A. Inoue, H. S. Chen, J. T. Krause, T. Masumoto, M. Hagiwara. Young’s modulus of Fe-, Co-, Pd- and Pt-based amorphous wires produced by the in-rotating-water spinning method. J. Mater. Sci., 1983, 18(9): 2743−2751 link1

[11] A. Inoue, T. Masumoto, H. S. Chen. Enthalpy relaxation behaviour of metal-metal (Zr-Cu) amorphous alloys upon annealing. J. Mater. Sci., 1985, 20(11): 4057−4068 link1

[12] A. Inoue, K. Ohtera, A. P. Tsai, T. Masumoto. New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M= Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys., 1988, 27(Part 2, No. 3): L280−L282 link1

[13] A. Inoue, T. Zhang, T. Masumoto. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. T. JIM, 1989, 30(12): 965−972

[14] A. P. Tsai, A. Inoue, T. Masumoto. Ductile Al-Ni-Zr amorphous alloys with high mechanical strength. J. Mater. Sci. Lett., 1988, 7(8): 805−807 link1

[15] Y. He, S. J. Poon, G. J. Shiflet. Synthesis and properties of metallic glasses that contain aluminum. Science, 1988, 241(4873): 1640−1642 link1

[16] Z. C. Zhong, X. Y. Jiang, A. L. Greer. Microstructure and hardening of Al-based nanophase composites. Mater. Sci. Eng. A, 1997, 226−228: 531−535

[17] Y. He, G. J. Shiflet, S. J. Poon. Ball milling-induced nanocrystal formation in aluminum-based metallic glasses. Acta Metall. Mater., 1995, 43(1): 83−91 link1

[18] J. C. Foley, D. R. Allen, J. H. Perepezko. Analysis of nanocrystal development in Al-Y-Fe and Al-Sm glasses. Scr. Mater., 1996, 35(5): 655−660 link1

[19] W. H. Jiang, F. E. Pinkerton, M. Atzmon. Effect of strain rate on the formation of nanocrystallites in an Al-based amorphous alloy during nanoindentation. J. Appl. Phys., 2003, 93(11): 9287−9290 link1

[20] A. Inoue. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci., 1998, 43(5): 365−520 link1

[21] A. Inoue. High strength bulk amorphous alloys with low critical cooling rates (overview). Mater. T. JIM, 1995, 36(7): 866−875 link1

[22] A. Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater., 2000, 48(1): 279−306 link1

[23] A. Inoue, T. Zhang, T. Masumoto. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. T. JIM, 1989, 30(12): 965−972 link1

[24] A. Inoue, T. Zhang, T. Masumoto. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. T. JIM, 1990, 31(3): 177−183 link1

[25] A. Inoue, T. Zhang, T. Masumoto. New amorphous alloys with significant supercooled liquid region and large reduced glass transition temperature. Mater. Sci. Eng. A, 1991, 134: 1125−1128 link1

[26] A. Inoue, T. Zhang, T. Masumoto. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater. T. JIM, 1990, 31(5): 425−428 link1

[27] A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. T. JIM, 1991, 32(7): 609−616 link1

[28] A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. T. JIM, 1992, 33(10): 937−945 link1

[29] T. Zhang, A. Inoue, T. Masumoto. Amorphous Zr-Al-TM (TM= Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. T. JIM, 1991, 32(11): 1005−1010 link1

[30] C. Suryanarayana, A. Inoue. Bulk Metallic Glasses. Boca Raton, FL: CRC Press, 2010

[31] A. Peker, W. L. Johnson. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett., 1993, 63(17): 2342−2344 link1

[32] A. Inoue, A. Takeuchi. Recent development and application products of bulk glassy alloys. Acta Mater., 2011, 59(6): 2243−2267 link1

[33] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. T. JIM, 1993, 34(12): 1234−1237 link1

[34] A. Inoue, Y. Yokoyama, Y. Shinohara, T. Masumoto. Preparation of bulky Zr-based amorphous alloys by a zone melting method. Mater. T. JIM, 1994, 35(12): 923−926 link1

[35] A. Inoue, T. Zhang. Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold. Mater. T. JIM, 1995, 36(9): 1184−1187 link1

[36] A. Inoue, J. S. Gook. Multicomponent Fe-based glassy alloys with wide supercooled liquid region before crystallization. Mater. T. JIM, 1995, 36(10): 1282−1285 link1

[37] A. Inoue, Y. Shinohara, J. S. Gook. Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater. T. JIM, 1995, 36(12): 1427−1433 link1

[38] Z. P. Lu, C. T. Liu. Role of minor alloying additions in formation of bulk metallic glasses: A review. J. Mater. Sci., 2004, 39(12): 3965−3974 link1

[39] W. H. Wang. Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci., 2007, 52(4): 540−596 link1

[40] C. T. Liu, Z. P. Lu. Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics, 2005, 13(3−4): 415−418 link1

[41] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater., 2001, 49(14): 2645−2652 link1

[42] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka. Cu-based bulk glassy alloys with good mechanical properties in Cu-Zr-Hf-Ti system. Mater. Trans., 2001, 42(8): 1805−1812 link1

[43] Q. Zhang, W. Zhang, A. Inoue. New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm. Scr. Mater., 2006, 55(8): 711−713 link1

[44] S. J. Pang, T. Zhang, K. Asami, A. Inoue. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Mater., 2002, 50(3): 489−497 link1

[45] S. Pang, T. Zhang, K. Asami, A. Inoue. Formation of bulk glassy Fe75–x–yCrxMoyC15B10 alloys and their corrosion behavior. J. Mater. Res., 2002, 17(3): 701−704 link1

[46] S. L. Zhu, X. M. Wang, A. Inoue. Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm. Intermetallics, 2008, 16(8): 1031−1035 link1

[47] S. L. Zhu, X. M. Wang, F. X. Qin, A. Inoue. A new Ti-based bulk glassy alloy with potential for biomedical application. Mater. Sci. Eng. A, 2007, 459(1−2): 233−237 link1

[48] V. Ponnambalam, S. J. Poon, G. J. Shiflet. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res., 2004, 19(5): 1320−1323 link1

[49] Z. P. Lu, C. T. Liu, J. R. Thompson, W. D. Porter. Structural amorphous steels. Phys. Rev. Lett., 2004, 92(24): 245503 link1

[50] J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett., 2005, 86(15): 151907 link1

[51] K. Amiya, A. Inoue. Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability. Mater. Trans., 2006, 47(6): 1615−1618 link1

[52] C. Chang, B. Shen, A. Inoue. Co-Fe-B-Si-Nb bulk glassy alloys with superhigh strength and extremely low magnetostriction. Appl. Phys. Lett., 2006, 88(1): 011901 link1

[53] Y. Zeng. N. Nishiyama, A. Inoue, Development of Ni-Pd-P-B bulk metallic glasses with high glass-forming ability. Mater. Trans., 2009, 50(6): 1243−1246

[54] C. Chang, C. Qin, A. Makino, A. Inoue. Enhancement of glass-forming ability of FeSiBP bulk glassy alloys with good soft-magnetic properties and high corrosion resistance. J. Alloys Compd., 2012, 533: 67−70 link1

[55] H. Ma, E. Ma, J. Xu. A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability. J. Mater. Res., 2003, 18(10): 2288−2291 link1

[56] A. Inoue, T. Nakamura, T. Sugita, T. Zhang, T. Masumoto. Bulky La-Al-TM (TM= transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. T. JIM, 1993, 34(4): 351−358 link1

[57] A. Inoue, N. Nishiyama, H. Kimura. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. T. JIM, 1997, 38(2): 179−183 link1

[58] N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, A. Inoue. The world’s biggest glassy alloy ever made. Intermetallics, 2012, 30: 19−24 link1

[59] H. B. Lou, 73 mm-diameter bulk metallic glass rod by copper mould casting. Appl. Phys. Lett., 2011, 99(5): 051910 link1

[60] A. Inoue, B. Shen, H. Koshiba, H. Kato, A. R. Yavari. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Mater., 2003, 2(10): 661−663 link1

[61] A. Inoue, B. L. Shen, H. Koshiba, H. Kato, A. R. Yavari. Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Mater., 2004, 52(6): 1631−1637 link1

[62] Q. Man, A. Inoue, Y. Dong, J. Qiang, C. Zhao, B. Shen. A new CoFe-based bulk metallic glasses with high thermoplastic forming ability. Scripta Mater., 2013, 69(7): 553−556 link1

[63] J. Li, H. Men, B. Shen. Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability. AIP Adv., 2011, 1(4): 042110 link1

[64] C. Fan, A. Inoue. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett., 2000, 77(1): 46−48 link1

[65] A. Inoue. Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys. Nanostruct. Mater., 1995, 6(1−4): 53−64 link1

[66] G. Y. Sun, G. Chen, C. T. Liu, G. L. Chen. Innovative processing and property improvement of metallic glass based composites. Scr. Mater., 2006, 55(4): 375−378 link1

[67] J. Eckert, J. Das, S. Pauly, C. Duhamel. Processing routes, microstructure and mechanical properties of metallic glasses and their composites. Adv. Eng. Mater., 2007, 9(6): 443−453 link1

[68] H. Kato, T. Hirano, A. Matsuo, Y. Kawamura, A. Inoue. High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles. Scr. Mater., 2000, 43(6): 503−507 link1

[69] A. Inoue, F. L. Kong, S. L. Zhu, E. Shalaan, F. M. Al-Marzouki. Production methods and properties of engineering glassy alloys and composites. Intermetallics, 2015, 58: 20−30 link1

[70] A. Inoue, N. Matsumoto, T. Masumoto. Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity. Mater. T. JIM, 1990, 31(6): 493−500 link1

[71] L. Zhuo, B. Yang, H. Wang, T. Zhang. Spray formed Al-based amorphous matrix nanocomposite plate. J. Alloys Compd., 2011, 509(18): L169−L173 link1

[72] H. Kakiuchi, A. Inoue, M. Onuki, Y. Takano, T. Yamaguchi. Application of Zr-based bulk glassy alloys to golf clubs. Mater. Trans., 2001, 42(4): 678−681 link1

[73] W. L. Johnson. Bulk glass-forming metallic alloys: Science and technology. MRS Bull., 1999, 24(10): 42−56 link1

[74] W. L. Johnson. Bulk amorphous metal–An emerging engineering material. JOM, 2002, 54(3): 40−43

[75] H. Koshiba, Y. Naito, T. Mizushima, A. Inoue. Development of the Fe-based glassy alloy “LiqualloyTM” and its application to powder core. Materia Japan, 2008, 47(1): 39−41 link1

[76] H. Matsumoto, A. Urata, Y. Yamada, A. Inoue. FePBNbCr soft-magnetic glassy alloys with low loss characteristics for inductor cores. J. Alloys Compd., 2010, 504(Supplement 1): S139−S141 link1

[77] A. Kobayashi, S. Yano, H. Kimura, A. Inoue. Mechanical property of Fe-base metallic glass coating formed by gas tunnel type plasma spraying. Surf. Coat. Tech., 2008, 202(12): 2513−2518 link1

[78] H. G. Kim, Effect of particle size distribution of the feedstock powder on the microstructure of bulk metallic glass sprayed coating by HVOF on aluminum alloy substrate. Mater. Sci. Forum, 2008, 580−582: 467−470

[79] A. Inoue, N. Nishiyama. New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. MRS Bull., 2007, 32(8): 651−658 link1

[80] B. Shen, C. Chang, T. Kubota, A. Inoue. Superhigh strength and excellent soft-magnetic properties of [(Co1–xFex)0.75B0.2Si0.05]96Nb4 bulk glassy alloys. J. Appl. Phys., 2006, 100(1): 013515 link1

[81] A. Inoue, B. L. Shen, C. T. Chang. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1–xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater., 2004, 52(14): 4093−4099 link1

[82] W. Yang, Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity. Sci. Rep., 2014, 4: 6233 link1

[83] L. Ma, L. Wang, T. Zhang, A. Inoue. Bulk glass formation of Ti-Zr-Hf-Cu-M (M= Fe, Co, Ni) alloys. Mater. Trans., 2002, 43(2): 277−280 link1

[84] B. S. Murty, J. W. Yeh, S. Ranganathan. High-Entropy Alloys. London: Butterworth-Heinemann, 2014

[85] A. Takeuchi, Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics, 2011, 19(10): 1546−1554 link1

[86] A. Inoue, Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys. J. Alloys Compd., 2015, 638: 197−203 link1

Related Research