Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 2 doi: 10.15302/J-ENG-2015040

High-Throughput Screening Using Fourier-Transform Infrared Imaging

SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA

Received: 2015-06-08 Revised: 2015-06-26 Accepted: 2015-06-30 Available online: 2015-06-30

Next Previous

Abstract

Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT) heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR) imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Anon. Recognizing the best in innovation: Breakthrough catalyst. R&D Magazine, 2005, September: 20

[ 2 ] M. Baerns, M. Holeňa. Approaches in the development of heterogeneous catalysts. In: M. Baerns, M. Holeňa, eds. Combinatorial Development of Solid Catalytic Materials: Design of High-Throughput Experiments, Data Analysis, Data Mining. London: Imperial College Press, 2009: 7−20

[ 3 ] A. Jain, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mat., 2013, 1(1): 011002

[ 4 ] H. Shibata, Heterogeneous catalysis high throughput workflow: A case study involving propane oxidative dehydrogenation. In: A. Hagemeyer, A. F. Volpe Jr., eds. Modern Applications of High Throughput R&D in Heterogeneous Catalysis. Sharjah: Bentham Science Publishers, 2014: 173−196

[ 5 ] H. W. Turner, A. F. Volpe Jr., W. H. Weinberg. High-throughput heterogeneous catalyst research. Surf. Sci., 2009, 603(10−12): 1763−1769 link1

[ 6 ] I. E. Maxwell, P. van den Brink, R. S. Downing, A. H. Sijpkes, S. Gomez, Th. Maschmeyer. High-throughput technologies to enhance innovation in catalysis. Top. Catal., 2003, 24(1−4): 125−135 link1

[ 7 ] W. F. Maier, K. Stöwe, S. Sieg. Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. Engl., 2007, 46(32): 6016−6067 link1

[ 8 ] D. Farrusseng. High-throughput heterogeneous catalysis. Surf. Sci. Rep., 2008, 63(11): 487−513 link1

[ 9 ] R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam. Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci., 2011, 13(6): 579−633 link1

[10] J. P. Holdren. Materials Genome Initiative for Global Competitiveness. Washington, DC: National Science and Technology Council, 2011

[11] D. D. Devore, R. M. Jenkins. Impact of high throughput experimentation on homogeneous catalysis research. Comment. Inorg. Chem., 2014, 34(1−2): 17−41 link1

[12] J. Lauterbach, E. Sasmaz, J. Bedenbaugh, S. Kim, J. Hattrick-Simpers. Discovery and optimization of coking and sulfur resistant Bi-metallic catalyst for cracking JP-8: From thin film libraries to single powders. In: A. Hagemeyer, A. F. Volpe Jr., eds. Modern Applications of High Throughput R&D in Heterogeneous Catalysis. Sharjah: Bentham Science Publishers, 2014: 89−117

[13] S. Senkan. Combinatorial heterogeneous catalysis—A new path in an old field. Angew. Chem. Int. Ed. Engl., 2001, 40(2): 312−329 link1

[14] J. R. Ebner, M. R. Thompson. An active site hypothesis for well-crystallized vanadium phosphorus oxide catalyst systems. Catal. Today, 1993, 16(1): 51−60 link1

[15] R. Schlögl. Combinatorial chemistry in heterogeneous catalysis: A new scientific approach or “the King’s New Clothes”? Angew. Chem. Int. Edit., 1998, 37(17): 2333−2336 link1

[16] U. Rodemerck, M. Baerns, M. Holena, D. Wolf. Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials. Appl. Surf. Sci., 2004, 223(1−3): 168−174 link1

[17] J. M. Caruthers, Catalyst design: Knowledge extraction from high-throughput experimentation. J. Catal., 2003, 216(1−2): 98−109 link1

[18] Y. Yang, T. Lin, X. L. Weng, J. A. Darr, X. Z. Wang. Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials. Comput. Chem. Eng., 2011, 35(4): 671−678 link1

[19] A. G. Maldonado, G. Rothenberg. Predictive modeling in catalysis—From dream to reality. Chem. Eng. Prog., 2009, 105(6): 26−32

[20] G. Rothenberg. Data mining in catalysis: Separating knowledge from garbage. Catal. Today, 2008, 137(1): 2−10 link1

[21] J. M. Serra, A. Corma, A. Chica, E. Argente, V. Botti. Can artificial neural networks help the experimentation in catalysis? Catal. Today, 2003, 81(3): 393−403 link1

[22] J. M. Serra, A. Corma, E. Argente, S. Valero, V. Botti. Neural networks for modelling of kinetic reaction data applicable to catalyst scale up and process control and optimisation in the frame of combinatorial catalysis. Appl. Catal. A Gen., 2003, 254(1): 133−145 link1

[23] H. U. Gremlich. The use of optical spectroscopy in combinatorial chemistry. Biotechnol. Bioeng., 1998/1999, 61(3): 179−187 link1

[24] S. Schmatloch, M. A. R. Meier, U. S. Schubert. Instrumentation for combinatorial and high-throughput polymer research: A short overview. Macromol. Rapid Comm., 2003, 24(1): 33−46 link1

[25] Y. Zhang, X. Gong, H. Zhang, R. C. Larock, E. S. Yeung. Combinatorial screening of homogeneous catalysis and reaction optimization based on multiplexed capillary electrophoresis. J. Comb. Chem., 2000, 2(5): 450−452 link1

[26] N. E. Olong, K. Stöwe, W. F. Maier. A combinatorial approach for the discovery of low temperature soot oxidation catalysts. Appl. Catal. B Environ., 2007, 74(1−2): 19−25 link1

[27] F. C. Moates, M. Somani, J. Annamalai, J. T. Richardson, D. Luss, R. C. Willson. Infrared thermographic screening of combinatorial libraries of heterogeneous catalysts. Ind. Eng. Chem. Res., 1996, 35(12): 4801−4803 link1

[28] A. Holzwarth, H. W. Schmidt, W. F. Maier. Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography. Angew. Chem. Int. Edit., 1998, 37(19): 2644−2647 link1

[29] C. Brooks, High throughput discovery of CO oxidation/VOC combustion and water-gas shift catalysts for industrial multi-component streams. Top. Catal., 2006, 38(1−3): 195−209 link1

[30] S. J. Taylor, J. P. Morken. Thermographic selection of effective catalysts from an encoded polymer-bound library. Science, 1998, 280(5361): 267−270 link1

[31] J. Klein, Accelerating lead discovery via advanced screening methodologies. Catal. Today, 2003, 81(3): 329−335 link1

[32] N. Na, S. Zhang, X. Wang, X. Zhang. Cataluminescence-based array imaging for high-throughput screening of heterogeneous catalysts. Anal. Chem., 2009, 81(6): 2092−2097

[33] M. Breysse, B. Claudel, L. Faure, M. Guenin, R. J. J. Williams. Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal., 1976, 45(2): 137−144 link1

[34] H. Su, E. S. Yeung. High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. J. Am. Chem. Soc., 2000, 122(30): 7422−7423 link1

[35] H. Su, Y. Hou, R. S. Houk, G. L. Schrader, E. S. Yeung. Combinatorial screening of heterogeneous catalysis in selective oxidation of naphthalene by laser-induced fluorescence imaging. Anal. Chem., 2001, 73(18): 4434−4440 link1

[36] S. M. Senkan. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394(6691): 350−353 link1

[37] S. M. Senkan, S. Ozturk. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry. Angew. Chem. Int. Edit., 1999, 38(6): 791−795 link1

[38] P. Cong, High-throughput synthesis and screening of combinatorial heterogeneous catalyst libraries. Angew. Chem. Int. Edit., 1999, 38(4): 483−488 link1

[39] S. Senkan, K. Krantz, S. Ozturk, V. V. Zengin, I. I. Onal. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angew. Chem. Int. Ed. Engl., 1999, 38(18): 2794−2799 link1

[40] H. Wang, Z. Liu, J. Shen. Quantified MS analysis applied to combinatorial heterogeneous catalyst libraries. J. Comb. Chem., 2003, 5(6): 802−808 link1

[41] M. Richter, Combinatorial preparation and high-throughput catalytic tests of multi-component deNOx catalysts. Appl. Catal. B Environ., 2002, 36(4): 261−277 link1

[42] A. Hagemeyer, Application of combinatorial catalysis for the direct amination of benzene to aniline. Appl. Catal. A Gen., 2002, 227(1−2): 43−61 link1

[43] S. Gomez, J. A. Peters, J. C. van der Waal, T. Maschmeyer. High-throughput experimentation as a tool in catalyst design for the reductive amination of benzaldehyde. Appl. Catal. A Gen., 2003, 254(1): 77−84 link1

[44] C. Hoffmann, H. W. Schmidt, F. Schüth. A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction. J. Catal., 2001, 198(2): 348−354 link1

[45] M. Lucas, P. Claus. High throughput screening in monolith reactors for total oxidation reactions. Appl. Catal. A Gen., 2003, 254(1): 35−43 link1

[46] C. Kiener. High-throughput screening under demanding conditions: Cu/ZnO catalysts in high pressure methanol synthesis as an example. J. Catal., 2003, 216(1−2): 110−119 link1

[47] J. E. Bedenbaugh, S. Kim, E. Sasmaz, J. Lauterbach. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas. ACS Comb. Sci., 2013, 15(9): 491−497 link1

[48] O. Trapp. Boosting the throughput of separation techniques by “multiplexing”. Angew. Chem. Int. Ed. Engl., 2007, 46(29): 5609−5613 link1

[49] O. Trapp. Gas chromatographic high-throughput screening techniques in catalysis. J. Chromatogr. A, 2008, 1184(1−2): 160−190 link1

[50] R. R. Ernst, W. A. Anderson. Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum., 1966, 37(1): 93−102 link1

[51] M. B. Comisarow, A. G. Marshall. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett., 1974, 25(2): 282−283 link1

[52] O. Trapp, J. R. Kimmel, O. K. Yoon, I. A. Zuleta, F. M. Fernandez, R. N. Zare. Continuous two-channel time-of-flight mass spectrometric detection of electrosprayed ions. Angew. Chem. Int. Ed. Engl., 2004, 43(47): 6541−6544 link1

[53] E. N. Lewis, Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal. Chem., 1995, 67(19): 3377−3381 link1

[54] C. M. Snively, G. Oskarsdottir, J. Lauterbach. Chemically sensitive high throughput parallel analysis of solid phase supported library members. J. Comb. Chem., 2000, 2(3): 243−245 link1

[55] C. M. Snively, G. Oskarsdottir, J. Lauterbach. Parallel analysis of the reaction products from combinatorial catalyst libraries. Angew. Chem. Int. Ed. Engl., 2001, 40(16): 3028−3030 link1

[56] C. M. Snively, S. Katzenberger, G. Oskarsdottir, J. Lauterbach. Fourier-transform infrared imaging using a rapid-scan spectrometer. Opt. Lett., 1999, 24(24): 1841−1843 link1

[57] C. M. Snively, G. Oskarsdottir, J. Lauterbach. Chemically sensitive parallel analysis of combinatorial catalyst libraries. Catal. Today, 2001, 67(4): 357−368 link1

[58] C. M. Snively, J. Lauterbach, M. Christopher. Sampling accessories for HTE of combinatorial libraries using spectral imaging. Spectroscopy, 2002, 17(4), 26−33

[59] R. J. Hendershot, W. B. Rogers, C. M. Snively, B. Ogunnaike, J. Lauterbach. Development and optimization of NOx storage and reduction catalysts using statistically guided high-throughput experimentation. Catal. Today, 2004, 98(3): 375−385

[60] R. J. Hendershot, R. Vijay, C. M. Snively, J. Lauterbach. High-throughput study of the performance of storage and reduction catalysts as a function of cycling conditions and catalyst composition. Chem. Eng. Sci., 2006, 61(12): 3907−3916 link1

[61] R. Vijay, Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation. Catal. Commun., 2005, 6(2): 167−171 link1

[62] B. J. Feist. High throughput experimentation and microkinetic modeling (Master’s thesis). Newark, DE: University of Delaware, 2006

[63] D. W. Fickel, E. D’Addio, J. A. Lauterbach, R. F. Lobo. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ., 2011, 102(3−4): 441−448 link1

[64] J. C. Dellamorte, J. Lauterbach, M. A. Barteau. Effect of preparation conditions on Ag catalysts for ethylene epoxidation. Top. Catal., 2010, 53(1−2): 13−18 link1

[65] J. C. Dellamorte, J. Lauterbach, M. A. Barteau. Palladium-silver bimetallic catalysts with improved activity and selectivity for ethylene epoxidation. Appl. Catal. A Gen., 2011, 391(1−2): 281−288 link1

[66] E. D’Addio. High throughput Investigation of supported catalysts for COx-free hydrogen production from ammonia decomposition (Doctoral dissertation). Newark, DE: University of Delaware, 2011

[67] S. Salim. Development of high-throughput catalyst screening for ammonia based selective catalytic reduction of nitric oxide with parallel analysis using Fourier transform infrared imaging (Master’s thesis). Columbia, SC: University of South Carolina, 2013

[68] P. Kubanek, O. Busch, S. Thomson, H. W. Schmidt, F. Schüth. Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. J. Comb. Chem., 2004, 6(3): 420−425 link1

[69] K. L. A. Chan, S. G. Kazarian. FTIR spectroscopic imaging of dissolution of a solid dispersion of nifedipine in poly(ethylene glycol). Mol. Pharm., 2004, 1(4): 331−335 link1

[70] K. L. A. Chan, S. G. Kazarian. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: Spatial resolution and sampling versatility. Appl. Spectrosc., 2003, 57(4): 381−389 link1

[71] K. L. A. Chan, S. G. Kazarian, A. Mavraki, D. R. Williams. Fourier transform infrared imaging of human hair with a high spatial resolution without the use of a synchrotron. Appl. Spectrosc., 2005, 59(2): 149−155 link1

[72] K. L. A. Chan, S. G. Kazarian. High-throughput study of poly(ethylene glycol)/ibuprofen formulations under controlled environment using FTIR imaging. J. Comb. Chem., 2006, 8(1): 26−31 link1

[73] R. J. Hendershot, A novel reactor system for high throughput catalyst testing under realistic conditions. Appl. Catal. A Gen., 2003, 254(1): 107−120 link1

[74] S. S. Lasko. Quantitative high-throughput studies of catalyst libraries (Master’s thesis). West Lafayette, IN: Purdue University, 2002

[75] Anon. GRAMS/AITM with PLSplus/IQ add-on. Waltham, MA: Thermo Fischer Scientific Inc., 2009

[76] N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, V. P. Dravid. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett., 2004, 4(2): 383−386 link1

[77] C. Wen, X. Zhang, S. E. Lofland, J. Lauterbach, J. Hattrick-Simpers. Synthesis of mono-disperse CoFe alloy nanoparticles with high activity toward NaBH4 hydrolysis. Int. J. Hydrogen Energy, 2013, 38(15): 6436−6441 link1

[78] D. C. Montgomery. Design and Analysis of Experiments. 3rd ed. Somerset, NJ: John Wiley & Sons, Inc., 1991

[79] L. V. Azaroff, M. J. Buerger. The Powder Method in X-Ray Crystallography. New York: McGraw-Hill, 1958

[80] N. F. M. Henry, H. Lipson, W. A. Wooster. The Interpretation of X-Ray Diffraction Photographs. London: MacMillon, 1961

[81] Anon. Minitab 17 statistical software. State College, PA: Minitab, Inc., 2010

Related Research