Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 2 doi: 10.15302/J-ENG-2015041

Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips

1 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
2 Intematix Corporation, Fremont, CA 94538, USA
3 State Key Laboratory of Electronic Thin Films & Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Received: 2015-06-11 Revised: 2015-06-25 Accepted: 2015-06-30 Available online: 2015-06-30

Next Previous

Abstract

Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial materials chip technology, featuring high-throughput synthesis and characterization, is able to determine the phase diagram of an entire composition spread of a binary or ternary system at a single temperature on one materials library, which, though significantly increasing efficiency, still requires many libraries processed at a series of temperatures in order to complete a phase diagram. In this paper, we propose a "one-chip method" to construct a complete phase diagram by individually synthesizing each pixel step by step with a progressive pulse of energy to heat at different temperatures while monitoring the phase evolution on the pixel in situ in real time. Repeating this process pixel by pixel throughout the whole chip allows the entire binary or ternary phase diagram to be mapped on one chip in a single experiment. The feasibility of this methodology is demonstrated in a study of a Ge-Sb-Te ternary alloy system, on which the amorphous-crystalline phase boundary is determined.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

References

[ 1 ] X. D. Xiang, A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738−1740 link1

[ 2 ] M. L. Green, I. Takeuchi, J. R. Hattrick-Simpers. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys., 2013, 113(23): 231101 link1

[ 3 ] R. A. Potyrailo, V. M. Mirsky. Combinatorial and high-throughput development of sensing materials: The first 10 years. Chem. Rev., 2008, 108(2): 770−813 link1

[ 4 ] S. S. Mao. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123−130 link1

[ 5 ] L. Chen, J. Bao, C. Gao, S. Huang, C. Liu, W. Liu. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system. J. Comb. Chem., 2004, 6(5): 699−702 link1

[ 6 ] J. C. Zhao, M. R. Jackson, L. A. Peluso, L. N. Brewer. A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 2002, 27(04): 324−329 link1

[ 7 ] J. Montgomery. Chemistry. High-throughput discovery of new chemical reactions. Science, 2011, 333(6048): 1387−1388 link1

[ 8 ] J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence. J. Vac. Sci. Technol. A, 2010, 28(5): 1279−1280

[ 9 ] J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev. Sci. Instrum., 2009, 80(12): 123905 link1

[10] E. Reddington, Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735−1737 link1

[11] X. Liu, Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett., 2012, 12(11): 5733−5739 link1

[12] T. Wei, X. D. Xiang, W. G. Wallace-Freedman, P. G. Schultz. Scanning tip microwave near-field microscope. Appl. Phys. Lett., 1996, 68(24): 3506−3508 link1

[13] A. Oral, S. J. Bending, M. Henini. Scanning hall probe microscopy of superconductors and magnetic materials. J. Vac. Sci. Technol. B, 1996, 14(2): 1202−1205 link1

[14] I. Takeuchi, Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1–xO composition spreads. J. Appl. Phys., 2003, 94(11): 7336−7340 link1

[15] S. Huxtable, D. G. Cahill, V. Fauconnier, J. O. White, J. C. Zhao. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 2004, 3(5): 298−301 link1

[16] H. J. Kim, J. H. Han, R. Kaiser, K. H. Oh, J. J. Vlassak. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams. Rev. Sci. Instrum., 2008, 79(4): 045112 link1

[17] C. Allibert, C. Bernard, N. Valignat, M. Dombre. Co-Cr binary system: Experimental re-determination of the phase diagram and comparison with the diagram calculated from the thermodynamic data. J. Less Common Met., 1978, 59(2): 211−228 link1

[18] K. Ishida, T. Nishizawa. The Co-Cr (cobalt-chromium) system. Bull. Alloy Phase Diagr., 1990, 11(4): 357−370 link1

[19] T. Nishizawa, K. Ishida. The Co-Fe (cobalt-iron) system. Bull. Alloy Phase Diagr., 1984, 5(3): 250−259

[20] J. C. Tedenac. Cobalt-iron-nickel. In: G. Effenberg, S. Ilyenko, eds. Iron Systems, Part 2. Berlin: Springer Berlin Heidelberg, 2008: 653−672

[21] V. Raghavan. Co-Fe-Ni (cobalt-iron-nickel). J. Phase Equilibria, 1994, 15(5): 526−527 link1

[22] Y. K. Yoo, Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips. Intermetallics, 2006, 14(3): 241−247 link1

[23] H. Chang, I. Takeuchi, X. D. Xiang. A low-loss composition region identified from a thin-film composition spread of (Ba1–x–y SrxCay)TiO3. Appl. Phys. Lett., 1999, 74(8): 1165−1167 link1

[24] Y. K. Yoo, Strong correlation between high-temperature electronic and low-temperature magnetic ordering in La1–xCaxMnO3 continuous phase diagram. Phys. Rev. B, 2001, 63(22): 224421 link1

[25] I. Takeuchi, Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method. J. Appl. Phys., 2001, 90(5): 2474−2478 link1

[26] Y. K. Yoo, F. Duewer, H. Yang, D. Yi, J. W. Li, X. D. Xiang. Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites. Nature, 2000, 406(6797): 704−708 link1

[27] L. Fister, D. C. Johnson. Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc., 1992, 114(12): 4639−4644 link1

[28] I. Takeuchi, Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries. Appl. Phys. Lett., 1998, 73(7): 894−896 link1

[29] A. V. Kolobov. Information storage: Around the phase-change cycle. Nat. Mater., 2008, 7(5): 351−353 link1

[30] G. I. Meijer. Materials science. Who wins the nonvolatile memory race? Science, 2008, 319(5870): 1625−1626 link1

[31] G. Atwood. Engineering. Phase-change materials for electronic memories. Science, 2008, 321(5886): 210−211 link1

[32] H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, H. K. Wickramasinghe. Ultra-high-density phase-change storage and memory. Nat. Mater., 2006, 5(5): 383−387 link1

[33] M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, R. Dronskowski. The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater., 2007, 6(2): 122−128

[34] C. Peng, Improved thermal stability and electrical properties for Al-Sb-Te based phase-change memory. ECS Solid State Lett., 2012, 1(2): 38−41 link1

[35] X. Zhou, Phase transition characteristics of Al-Sb phase change materials for phase change memory application. Appl. Phys. Lett., 2013, 103(7): 072114 link1

[36] M. Belhadji, N. Benameur, J. M. Saiter, J. Grenet. Application of Gibbs-Di Marzio modified equation to the Ge-Te-Sb vitreous system. Phys. Status Solidi B, 1997, 201(2): 377−380 link1

[37] J. Siegel, C. N. Afonso, J. Solis. Dynamics of ultrafast reversible phase transitions in GeSb films triggered by picosecond laser pulses. Appl. Phys. Lett., 1999, 75(20): 3102−3104 link1

[38] H. J. Borg, Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn. J. Appl. Phys., 2001, 40(Part 1, 3B): 1592−1597 link1

[39] B. J. Kooi, J. Th. M. De Hosson. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J. Appl. Phys., 2004, 95(9): 4714−4721 link1

[40] B. J. Kooi, W. M. G. Groot, J. Th. M. De Hosson. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J. Appl. Phys., 2004, 95(3): 924−932 link1

Related Research