Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 2 doi: 10.15302/J-ENG-2015046

Salinity Gradient Energy: Current State and New Trends

1 Wetsus, European Center of Excellence for Sustainable Water Technology, Leeuwarden 8900 CC, the Netherlands
2 Sub-Department of Environmental Technology, Wagening University, Wageningen 6700 EV, the Netherlands

Available online: 2015-06-04

Next Previous

Abstract

In this article we give an overview of the state of the art of salinity gradient technologies. We first introduce the concept of salinity gradient energy, before describing the current state of development of the most advanced of these technologies. We conclude with the new trends in the young field of salinity gradient technologies.

Figures

Fig. 1

Fig. 2

Fig. 3

References

[ 1 ] R. E. Pattle. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 1954, 174(4431): 660 link1

[ 2 ] J. D. Isaacs, R. J. Seymour. The ocean as a power resource. Int. J. Environ. Stud., 1973, 4(1−4): 201−205 link1

[ 3 ] B. E. Logan, M. Elimelech. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488(7411): 313−319 link1

[ 4 ] J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen. Reverse electrodialysis: Evaluation of suitable electrode systems. J. Appl. Electrochem., 2010, 40(8): 1461−1474 link1

[ 5 ] D. A. Vermaas, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers, K. Nijmeijer. Clean energy generation using capacitive electrodes in reverse electrodialysis. Energy Environ. Sci., 2013, 6(2): 643−651 link1

[ 6 ] D. A. Vermaas, M. Saakes, K. Nijmeijer. Power generation using profiled membranes in reverse electrodialysis. J. Membrane. Sci., 2011, 385−386: 234−242

[ 7 ] D. A. Vermaas, J. Veerman, M. Saakes, K. Nijmeijer. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ. Sci., 2014, 7(4): 1434−1445 link1

[ 8 ] D. A. Vermaas, D. Kunteng, J. Veerman, M. Saakes, K. Nijmeijer. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis. Environ. Sci. Technol., 2014, 48(5): 3065−3073 link1

[ 9 ] D. Brogioli. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett., 2009, 103(5): 058501 link1

[10] B. B. Sales, M. Saakes, J. W. Post, C. J. Buisman, P. M. Biesheuvel, H. V. Hamelers. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Environ. Sci. Technol., 2010, 44(14): 5661−5665 link1

[11] F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, Y. Cui. Batteries for efficient energy extraction from a water salinity difference. Nano Lett., 2011, 11(4): 1810−1813 link1

[12] R. A. Tufa, Potential of brackish water and brine for energy generation by salinity gradient power-reverse electrodialysis (SGP-RE). RSC Adv., 2014, 4(80): 42617−42623 link1

[13] B. B. Sales, O. S. Burheim, S. Porada, V. Presser, C. J. N. Buisman, H. V. M. Hamelers. Extraction of energy from small thermal differences near room temperature using capacitive membrane technology. Environ. Sci. Technol. Lett., 2014, 1(9): 356−360 link1

[14] S. Ahualli, M. M. Fernández, G. Iglesias, Á. Delgado, M. L. Jiménez. Temperature effects on energy production by salinity exchange. Environ. Sci. Technol., 2014, 48(20): 12378−12385 link1

[15] H. V. M. Hamelers, O. Schaetzle, J. M. Paz-García, P. M. Biesheuvel, C. J. N. Buisman. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett., 2014, 1(1): 31−35 link1

Related Research