Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 3 doi: 10.15302/J-ENG-2015052

Materials Design on the Origin of Gap States in a High-κ/GaAs Interface

1 Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
2 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China

Received: 2015-06-23 Revised: 2015-09-08 Accepted: 2015-09-14 Available online: 2015-09-30

Next Previous

Abstract

Given the demand for constantly scaling microelectronic devices to ever smaller dimensions, a SiO2 gate dielectric was substituted with a higher dielectric-constant material, Hf(Zr)O2, in order to minimize current leakage through dielectric thin film. However, upon interfacing with high dielectric constant (high-κ) dielectrics, the electron mobility in the conventional Si channel degrades due to Coulomb scattering, surface-roughness scattering, remote-phonon scattering, and dielectric-charge trapping. III-V and Ge are two promising candidates with superior mobility over Si. Nevertheless, Hf(Zr)O2/III-V(Ge) has much more complicated interface bonding than Si-based interfaces. Successful fabrication of a high-quality device critically depends on understanding and engineering the bonding configurations at Hf(Zr)O2/III-V(Ge) interfaces for the optimal design of device interfaces. Thus, an accurate atomic insight into the interface bonding and mechanism of interface gap states formation becomes essential. Here, we utilize first-principle calculations to investigate the interface between HfO2 and GaAs. Our study shows that As−As dimer bonding, Ga partial oxidation (between 3+ and 1+) and Ga− dangling bonds constitute the major contributions to gap states. These findings provide insightful guidance for optimum interface passivation.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] J. Robertson, R. M. Wallace. High-k materials and metal gates for CMOS applications. Mat. Sci. Eng. R., 2015, 88: 1–41

[ 2 ] K. Cho. First-principles modeling of high-k gate dielectric materials. Comp. Mater. Sci., 2002, 23(1−4): 43–47 link1

[ 3 ] M. Haverty, A. Kawamoto, K. Cho, R. Dutton. First-principles study of transition-metal aluminates as high-k gate dielectrics. Appl. Phys. Lett., 2002, 80(15): 2669–2671 link1

[ 4 ] S. Park, L. Colombo, Y. Nishi, K. Cho. Ab initio study of metal gate electrode work function. Appl. Phys. Lett., 2005, 86(7): 073118 link1

[ 5 ] J. H. Ha, P. C. McIntyre, K. Cho. First principles study of the HfO2/SiO2 interface: Application to high-k gate structures. J. Appl. Phys., 2007, 101(3): 033706

[ 6 ] The White House. About the Materials Genome Initiative. https://www.whitehouse.gov/mgi

[ 7 ] B. Lee, K. Cho. Extended embedded-atom method for platinum nanoparticles. Surf. Sci., 2006, 600(10): 1982–1990 link1

[ 8 ] X. Hao, Experimental and theoretical study of CO oxidation on PdAu catalysts with NO pulse effects. Top. Catal., 2009, 52(13−20): 1946–1950 link1

[ 9 ] B. Shan, First-principles-based embedded atom method for PdAu nanoparticles. Phys. Rev. B, 2009, 80(3): 035404

[10] M. J. Hale, S. I. Yi, J. Z. Sexton, A. C. Kummel, M. Passlack. Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2×8)/(2×4). J. Chem. Phys., 2003, 119(13): 6719–6728

[11] D. L. Winn, M. J. Hale, T. J. Grassman, A. C. Kummel, R. Droopad, M. Passlack. Direct and indirect causes of Fermi level pinning at the SiO/GaAs interface. J. Chem. Phys., 2007, 126(8): 084703

[12] M. Passlack, R. Droopad, P. Fejes, L. Wang. Electrical properties of Ga2O3/GaAs interfaces and GdGaO dielectrics in GaAs-based MOSFETs. IEEE Electr. Device L., 2009, 30(1): 2–4 link1

[13] C. L. Hinkle, Comparison of n-type and p-type GaAs oxide growth and its effects on frequency dispersion characteristics. Appl. Phys. Lett., 2008, 93(11): 113506 link1

[14] C. L. Hinkle, M. Milojevic, E. M. Vogel, R. M. Wallace. The significance of core-level electron binding energies on the proper analysis of InGaAs interfacial bonding. Appl. Phys. Lett., 2009, 95(15): 151905 link1

[15] R. V. Galatage, Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states. J. Appl. Phys., 2014, 116(1): 014504 link1

[16] M. Passlack, M. Hong, J. P. Mannaerts, S. N. G. Chu, R. L. Opila, N. Moriya. In-situ Ga2O3 process for GaAs inversion/accumulation device and surface passivation applications. In: 1995 International Electron Devices Meeting. Piscataway, NJ: IEEE, 1995: 383–386

[17] E. P. O’Reilly, J. Robertson. Electronic structure of amorphous III-V and II-VI compound semiconductors and their defects. Phys. Rev. B Condens. Matter, 1986, 34(12): 8684–8695 link1

[18] P. W. Peacock, J. Robertson. Bonding, energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces. Phys. Rev. Lett., 2004, 92(5): 057601 link1

[19] J. Robertson, L. Lin. Fermi level pinning in Si, Ge and GaAs systems—MIGS or defects? In: 2009 International Electron Devices Meeting. Piscataway, NJ: IEEE, 2009: 119

[20] W. Wang, K. Xiong, R. M. Wallace, K. Cho. Impact of interfacial oxygen content on bonding, stability, band offsets, and interface states of GaAs:HfO2 interfaces. J. Phys. Chem. C, 2010, 114(51): 22610–22618 link1

[21] C. L. Hinkle, E. M. Vogel, P. D. Ye, R. M. Wallace. Interfacial chemistry of oxides on InxGa(1–x) As and implications for MOSFET applications. Curr. Opin. Solid St. M., 2011, 15(5): 188–207 link1

[22] K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskelä. Atomic layer deposition of hafnium dioxide films from hafnium tetrakis(ethylmethylamide) and water. Chem. Vapor. Depos., 2002, 8(5): 199–204 link1

[23] S. Keun Kim, C. Seong Hwang, S. H. Ko Park, S. Jin Yun. Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant. Thin Solid Films, 2005, 478(1−2): 103–108 link1

[24] G. Henkelman, A. Arnaldsson, H. Jónsson. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci., 2006, 36(3): 354–360 link1

[25] J. Robertson. Model of interface states at III-V oxide interfaces. Appl. Phys. Lett., 2009, 94(15): 152104 link1

[26] W. Wang, G. Lee, M. Huang, R. M. Wallace, K. Cho. First-principles study of GaAs (001)-β2 (2 × 4) surface oxidation and passivation with H, Cl, S, F, and GaO. J. Appl. Phys., 2010, 107(10): 103720

[27] W. Wang, K. Xiong, C. Gong, R. M. Wallace, K. Cho. Si passivation effects on atomic bonding and electronic properties at HfO2/GaAs interface: A first-principles study. J. Appl. Phys., 2011, 109(6): 063704

[28] J. Robertson. Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B, 2000, 18(3): 1785–1791

[29] G. D. Wilk, R. M. Wallace, J. M. Anthony. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys., 2001, 89(10): 5243–5275

[30] C. G. van de Walle, R. M. Martin. Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B Condens. Matter, 1987, 35(15): 8154–8165 link1

[31] H. M. Al-Allak, S. J. Clark. Valence-band offset of the lattice-matched β-FeSi2(100)/Si(001) heterostructure. Phys. Rev. B, 2001, 63(3): 033311

[32] V. V. Afanas’ev, Energy barriers at interfaces of (100)GaAs with atomic layer deposited Al2O3 and HfO2. Appl. Phys. Lett., 2008, 93(21): 212104 link1

[33] G. Seguini, M. Perego, S. Spiga, M. Fanciulli, A. Dimoulas. Conduction band offset of HfO2 on GaAs. Appl. Phys. Lett., 2007, 91(19): 192902 link1

[34] G. K. Dalapati, H. J. Oh, S. J. Lee, A. Sridhara, A. S. W. Wong, D. Chi. Energy-band alignments of HfO2 on p-GaAs substrates. Appl. Phys. Lett., 2008, 92(4): 042120 link1

[35] J. Robertson, B. Falabretti. Band offsets of high K gate oxides on III-V semiconductors. J. Appl. Phys., 2006, 100(1): 014111

[36] A. G. Cullis, L. T. Canham. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature, 1991, 353(6342): 335–338 link1

[37] V. Lehmann, U. Gösele. Porous silicon formation: A quantum wire effect. Appl. Phys. Lett., 1991, 58(8): 856–858 link1

[38] J. Zhu, Z. G. Liu. Structure and dielectric properties of ultra-thin ZrO2 films for high-k gate dielectric application prepared by pulsed laser deposition. Appl. Phys. A-Mater., 2004, 78(5): 741–744 link1

[39] C. L. Hinkle, GaAs interfacial self-cleaning by atomic layer deposition. Appl. Phys. Lett., 2008, 92(7): 071901 link1

[40] C. L. Hinkle, Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning. Appl. Phys. Lett., 2009, 94(16): 162101 link1

[41] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling. Numerical Recipes: The Art of Scientific Computing. New York: Cambridge University Press, 1986

[42] J. P. Perdew, M. Ernzerhof, K. Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., 1996, 105(22): 9982–9985

[43] P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): B864–B871 link1

[44] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133–A1138 link1

[45] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865–3868 link1

[46] L. C. West, S. J. Eglash. First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett., 1985, 46(12): 1156–1158 link1

Related Research