Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 2 doi: 10.15302/J-ENG-2015053

Recent Developments in Functional Crystals in China

1 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China
3 Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403-0001, USA

Received: 2015-06-22 Revised: 2015-06-28 Accepted: 2015-06-30 Available online: 2015-06-30

Next Previous

Abstract

Functional crystals are the basic materials for the development of modern science and technology and are playing key roles in the modern information era. In this paper, we review functional crystals in China, including research history, significant achievements, and important applications by highlighting the most recent progress in research. Challenges for the development of functional materials are discussed and possible directions for development are proposed by focusing on potential strengths of these materials.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

References

[ 1 ] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 1960, 187(4736): 493−494 link1

[ 2 ] W. Koechner. Solid-State Lasers Engineering. W. Sun, Z. W. Jiang, G. X. Cheng, trans. Beijing: Science Press, 2002 (in Chinese)

[ 3 ] J. E. Geusic, H. M. Marcos, L. G. Van Uitert. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Lett., 1964, 4(10): 182−184 link1

[ 4 ] A. Kruusing. Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods. Opt. Lasers Eng., 2004, 41(2): 329−352 link1

[ 5 ] B. Jiang, Z. Zhao, G. Zhao, J. Xu. Thin disk solid state lasers and heat capacity solid state lasers. Laser & Optoelectronics Progress, 2006, 43(3): 3−8 (in Chinese)

[ 6 ] A. Heller. Efficiently changing the color of laser light. S&TR, 2006-10-19. https://str.llnl.gov/str/Oct06/Ebbers.html

[ 7 ] H. Yin, P. Deng, F. Gan. Defects in YAG:Yb crystals. J. Appl. Phys., 1998, 83(7): 3825−3828 link1

[ 8 ] J. Dong, A. Shirakawa, K. Ueda, J. Xu, P. Deng. Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique. Appl. Phys. Lett., 2006, 88(16): 161115 link1

[ 9 ] Y. H. Peng, Y. X. Lim, J. Cheng, Y. Guo, Y. Y. Cheah, K. S. Lai. Near fundamental mode 1.1 kW Yb:YAG thin-disk laser. Opt. Lett., 2013, 38(10): 1709−1711 link1

[10] J. Brons, Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Opt. Lett., 2014, 39(22): 6442−6445. link1

[11] X. Liang, Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier. Opt. Express, 2007, 15(23): 15335−15341 link1

[12] V. Yanovsky, Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express, 2008, 16(3): 2109−2114 link1

[13] Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, Z. Wei. High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett., 2011, 36(16): 3194−3196 link1

[14] T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, J. Lee. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Opt. Express, 2012, 20(10): 10807−10815 link1

[15] Y. Chu, High-contrast 2.0 Petawatt Ti:sapphire laser system. Opt. Express, 2013, 21(24): 29231−29239 link1

[16] V. Chvykov, K. Krushelnick. Large aperture multi-pass amplifiers for high peak power lasers. Opt. Commun., 2012, 285(8): 2134−2136 link1

[17] H. Kiriyama, Temporal contrast enhancement of petawatt-class laser pulses. Opt. Lett., 2012, 37(16): 3363−3365 link1

[18] D. B. Joyce, F. Schmid. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. J. Cryst. Growth, 2010, 312(8): 1138−1141 link1

[19] A. Nehari, Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical characterizations. Cryst. Growth Des., 2011, 11(2): 445−448 link1

[20] S. F. Shao, Research progress in numerical simulation for crystal growth by czochralski method. J. Synth. Cryst., 2005, 34(4): 687−692 (in Chinese)

[21] R. Peters, C. Kränkel, K. Petermann, G. Huber. Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency. Opt. Express, 2007, 15(11): 7075−7082 link1

[22] N. S. Prasad, Recent progress in the development of neodymium-doped ceramic yttria. IEEE J. Sel. Top. Quant., 2007, 13(3): 831−837 link1

[23] G. Boulon, Search of optimized trivalent ytterbium doped-inorganic crystals for laser applications. J. Alloy. Compd., 2002, 341(1−2): 2−7 link1

[24] R. H. Hoskins, B. H. Soffer. Stimulated emission from Y2O3:Nd3+. Appl. Phys. Lett., 1964, 4(1): 22−23 link1

[25] L. Fornasiero, E. Mix, V. Peters, E. Heumann, K. Petermann, G. Huber. Efficient laser operation of Nd:Sc2O3 at 966 nm, 1082 nm and 1486 nm. In: OSA Trends in Optics and Photonics Vol.26 Advanced Solid-State lasers (Optical Society of America, 1999). Boston, MA, US, 1999: 249−251

[26] L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber. New oxide crystals for solid state lasers. Cryst. Res. Technol., 1999, 34(2): 255−260 link1

[27] K. Petermann, Highly Yb-doped oxides for thin-disc lasers. J. Cryst. Growth, 2005, 275(1−2): 135−140 link1

[28] P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert. Highly efficient mode-locked Yb:Sc2O3 laser. Opt. Lett., 2004, 29(4): 391−393 link1

[29] C. R. E. Baer, Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power. Opt. Lett., 2009, 34(18): 2823−2825 link1

[30] C. R. E. Baer, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett., 2010, 35(13): 2302−2304 link1

[31] L. Hao, Spectroscopy and laser performance of Nd:Lu2O3 crystal. Opt. Express, 2011, 19(18): 17774−17779 link1

[32] J. R. O’Conner. Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd. Appl. Phys. Lett., 1966, 9(11): 407−409 link1

[33] P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, I. A. Shcherbakov. GdVO4 as a new medium for solid-state lasers: Some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions. Quantum Electron., 1995, 25(12): 1162−1165 link1

[34] C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, E. Cavalli. Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping. J. Opt. Soc. Am. B, 2002, 19(8): 1794−1800

[35] B. Yao, Crystal growth and laser performance of neodymium-doped scandium orthovanadate. J. Cryst. Growth, 2010, 312(5): 720−723 link1

[36] J. Liu, Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1–xVO4 crystals. Appl. Phys. Lett., 2003, 83(7): 1289−1291 link1

[37] H. Yu, Enhancement of passive Q-switching performance with mixed Nd:LuxGd1–xVO4 laser crystals. Opt. Lett., 2007, 32(15): 2152−2154 link1

[38] P. P. Yaney, L. G. DeShazer. Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4. J. Opt. Soc. Am., 1976, 66(12): 1405−1414 link1

[39] W. Li, E. Shi, W. Zhong, Z. Yin. Anion coordination polyhedron growth unit theory mode and crystal morphology. J. Synth. Cryst., 1999, 28(2): 117−125 (in Chinese)

[40] M. Wei, G. Li, Y. Zhu, X. Wu, Z. Yu, S. Teng. Raw material synthesis of yttrium vanadate crystals (Nd3+:YVO4:YVO4). J. Synth. Cryst., 1998, 27(2): 178−181 (in Chinese)

[41] X. Meng, L. Zhu, H. Zhang, C. Wang, Y. T. Chow, M. Lu. Growth, morphology and laser performance of Nd:YVO4 crystal. J. Cryst. Growth, 1999, 200(1−2): 199−203 link1

[42] P. Shi, D. Li, H. Zhang, Y. Wang, K. Du. An 110 W Nd:YVO4 slab laser with high beam quality output. Opt. Commun., 2004, 229(1−6): 349−354 link1

[43] L. Cui, 880 nm laser-diode end-pumped Nd:YVO4 slab laser at 1342 nm. Laser Phys., 2011, 21(1): 105−107 link1

[44] J. J. Zayhowski, C. Dill Iii. Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers. Opt. Lett., 1995, 20(7): 716−718 link1

[45] D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, A. Tünnermann. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime. Opt. Lett., 2007, 32(15): 2115−2117 link1

[46] H. Lin, J. Li, X. Liang. 105 W,<10 ps, TEM00 laser output based on an in-band pumped Nd:YVO4 Innoslab amplifier. Opt. Lett., 2012, 37(13): 2634−2636 link1

[47] H. Zhang, Growth of new laser crystal Nd:LuVO4 by the Czochralski method. J. Cryst. Growth, 2003, 256(3−4): 292−297 link1

[48] J. Liu, Continuous-wave and pulsed laser performance of Nd:LuVO4 crystal. Opt. Lett., 2004, 29(2): 168−170 link1

[49] W. K. Jang, Q. Ye, J. Eichenholz, M. C. Richardson, B. H. T. Chai. Second harmonic generation in Yb doped YCa4O(BO3)3. Opt. Commun., 1998, 155(4−6): 332−334 link1

[50] D. Vivien, F. Mongel, G. Aka, A. Kahn-Harari, D. Pelenc. Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): A multifunctional material exhibiting both laser and nonlinear optical properties. Laser Phys., 1998, 8(3): 759−763

[51] Q. Ye, B. H. T. Chai. Crystal growth of YCa4O(BO3)3 and its orientation. J. Cryst. Growth, 1999, 197(1−2): 228−235 link1

[52] Z. Wang, K. Fu, X. Xu, X. Sun, H. Jiang, R. Song, J. Liu, J. Wang, Y. Liu, J. Wei, Z. Shao. The optimum configuration for the third-harmonic generation of 1.064 μm in a YCOB crystal. Appl. Phys. B, 2001, 72(7): 839−842 link1

[53] P. Yuan, G. Xie, D. Zhang, H. Zhong, L. Qian. High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling. Opt. Lett., 2010, 35 (11): 1878−1880 link1

[54] G. Aka, Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3. J. Opt. Soc. Am. B, 1997, 14(9): 2238−2247 link1

[55] O. H. Heckl, Continuous-wave and modelocked Yb:YCOB thin disk laser: First demonstration and future prospects. Opt. Express, 2010, 18(18): 19201−19208 link1

[56] A. Yoshida, Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses. Opt. Lett., 2011, 36(22): 4425−4427 link1

[57] J. Y. Wang, H. H. Yu, H. J. Zhang, J. Li, N. Zong, Z. Y. Xu. Progress on the research and potential applications of self-frequency doubling crystals. Progress in Phys., 2011, 31(2): 91−110 (in Chinese)

[58] H. Yu, Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm. Opt. Lett., 2011, 36(19): 3852−3854 link1

[59] T. Hahn. The International Tables for Crystallography. Myrtle Beach, SC: Springer Press, 1983

[60] G. Zhang, G. Lan, Y. Wang. Lattice Vibrational Spectroscopy. Beijing: Higher Education Press, 2001 (in Chinese)

[61] Z. Hu, Y. Zhao. A method and its apparatus for the large size nonlinear optical crystal growth by combination of crucible and seed crystal: CN, 101503819. 2009-08-12 (in Chinese)

[62] C. Chen, B. Wu, A. Jiang, G. You. A new type of ultraviolet SHG crystsl—β-BaB2O4. Sci. Sin. Ser. B, 1985, 28(4): 235−243

[63] D. N. Nikogosyan. Beta barium borate (BBO). Appl. Phys. A-Mater, 1991, 52(6): 359−368 link1

[64] D. Perlov, S. Livneh, P. Czechowicz, A. Goldgirsh, D. Loiacono. Progress in growth of large β-BaB2O4 single crystals. Cryst. Res. Technol., 2011, 46(7): 651−654 link1

[65] N. Ye, D. Tang. Hydrothermal growth of KBe2BO3F2 crystals. J. Cryst. Growth, 2006, 293(2): 233−235 link1

[66] C. T. Chen. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal. Opt. Mater., 2004: 26(4), 425−429 link1

[67] G. Wang, 12.95 mW sixth harmonic generation with KBe2BO3F2 crystal. Appl. Phys. B-Lasers. O., 2008, 91(1): 95−97 link1

[68] C. T. Chen, G. L. Wang, X. Y. Wang, Z. Y. Xu. Deep-UV nonlinear optical crystal KBe2BO3F2—Discovery, growth, optical properties and applications. Appl. Phys. B-Lasers. O., 2009, 97(1): 9−25 link1

[69] T. Kanai, X. Wang, S. Adachi, S. Watanabe, C. Chen. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device. Opt Express, 2009, 17(10): 8696−8703 link1

[70] G. Liu, Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum., 2008, 79(2): 023105 link1

[71] X. Wen. Theoretical and Experimental Study of Electrically Driven Traveling-Wave Thermoacoustic Refrigerator in Room Temperature Range. Beijing: Technical Institute of Physics and Chemistry, CAS, 2006 (in Chinese)

[72] C. Chen, Deep UV nonlinear optical crystal: RbBe2(BO3)F2. J. Opt. Soc. Am. B, 2009, 26(8): 1519−1525 link1

[73] H. Dai, C. Chen. Realization methods of laser jamming in helicopter with mid-infrared lasers. Jour. Sichuan Ordnance, 2011, 32(1): 114−116 (in Chinese)

[74] D. Sandy. Electronic Warfare Handbook 2008. Berkshire: The Shephard Press Ltd., 2008

[75] G. A. Verozubova, A. I. Gribenyukov, Y. P. Mironov. Two-temperature synthesis of ZnGeP2. Inorg. Mater., 2007, 43(10): 1040−1045 link1

[76] K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak. Large aperture single crystal ZnGeP2 for high-energy applications. J. Cryst. Growth, 2008, 310(7−9): 1891−1896 link1

[77] G. A. Verozubova, A. I. Gribenyukov. Growth of ZnGeP2 crystals from melt. Crystallogr. Rep., 2008, 53(1): 158−163 link1

[78] Z. Lei, C. Zhu, C. Xu, B. Yao, C. Yang. Growth of crack-free ZnGeP2 large single crystals for high-power mid-infrared OPO applications. J. Cryst. Growth, 2014, 389: 23−29 link1

[79] S. Wang, Crystal growth and piezoelectric, elastic and dielectric properties of novel LiInS2 crystal. J. Cryst. Growth, 2013, 362: 308−311 link1

[80] Q. Yu, Z. Gao, S. Zhang, W. Zhang, S. Wang, X. Tao. Second order nonlinear properties of monoclinic single crystal BaTeMo2O9. J. Appl. Phys., 2012, 111(1): 013506 link1

[81] J. Cheng, Synthesis and growth of ZnGeP2 crystals: Prevention of non-stoichiometry. J. Cryst. Growth, 2013, 362: 125−129 link1

[82] Y. Li, Z. Wu, X. Zhang, L. Wang, J. Zhang, Y. Wu. Crystal growth and terahertz wave generation of organic NLO crystals: OH1. J. Cryst. Growth, 2014, 402: 53−59 link1

[83] Y. Li, J. Zhang, G. Zhang, L. Wu, P. Fu, Y. Wu. Growth and characterization of DSTMS crystals. J. Cryst. Growth, 2011, 327(1): 127−132 link1

[84] X. Lin, G. Zhang, N. Ye. Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics. Cryst. Growth Des., 2009, 9(2): 1186−1189 link1

[85] J. Yao, BaGa4Se7: A new congruent-melting IR nonlinear optical material. Inorg. Chem., 2010, 49(20): 9212−9216 link1

[86] C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter. 700 W intracavity-frequency doubled Yb:YAG thin-disk laser at 100 kHz repetition rate. In: W. A. Clarkson, N. Hodgson, R. K. Shori, eds. Proceedings of SPIE 7578, Solid State Lasers XIX: Technology and Devices. San Francisco, CA, USA, 2010: 75780A

[87] G. D. Goodno, Investigation of β-BaB2O4 as a Q switch for high power applications. Appl. Phys. Lett., 1995, 66(13): 1575−1577 link1

[88] C. Stolzenburg, A. Giesen, F. Butze, P. Heist, G. Hollemann. Cavity-dumped intracavity-frequency-doubled Yb:YAG thin disk laser with 100?W average power. Opt. Lett., 2007, 32(9): 1123−1125 link1

[89] M. Roth, N. Angert, M. Tseitlin. Growth-dependent properties of KTP crystals and PPKTP structures. J. Mater. Sci-Mater. El., 2001, 12(8): 429−436 link1

[90] M. Roth, M. Tseitlin, N. Angert. Oxide crystals for electro-optic Q-switching of lasers. Glass Phys. Chem., 2005, 31(1): 86−95 link1

[91] Yu. V. Shaldin, S. Matyjasik, M. Tseitlin, M. Roth. Specific features of the pyroelectric properties of actual RbTiOPO4 single crystals in the temperature range 4.2−300 K. Phys. Solid State, 2008, 50(7): 1315−1312 link1

[92] M. Roth, M. Tseitlin. Growth of large size high optical quality KTP-type crystals. J. Cryst. Growth, 2010, 312(8): 1059−1064 link1

[93] J. Y. Wang, Progress of the electro-optic crystal research and the symmetry dependence of electro-optic effect. Progress in Phys., 2012, 32(1): 33−56 (in Chinese)

[94] L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, J. Wang. 520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser. Opt. Lett., 2012, 37(11): 1986−1988 link1

[95] L. Wang, 2.79 m high peak power LGS electro-optically Q-switched Cr, Er:YSGG laser. Opt. Lett., 2013, 38(12): 2150−2152 link1

[96] M. Kiefer, F. Pröbst, G. Angloher, I. Bavykina, D. Hauff, W. Seidel. Glued CaWO4 detectors for the CRESST-II experiment. Opt. Mater., 2009, 31(10): 1410−1414 link1

[97] H. Kraus, ZnWO4 scintillators for cryogenic dark matter experiments. Nucl. Instrum. Meth. A, 2009, 600(3): 594−598 link1

[98] J. Chen, G. Zhao, D. Cao, S. Zhou. Color center of YAlO3 with cation vacancies. Curr. Appl. Phys., 2010, 10(2): 468−470 link1

[99] Q. Gui, C. Zhang, M. Zhang, L. Hang, Z. Fang, Y. Ge. Study on crystal growth and scintillation properties of large-size CeCl3 doped LaBr3 crystal. Nuclear Electronics & Detection Technology, 2011, 31(11): 1195−1197, 1249 (in Chinese)

[100] Y. Zhang, M. Luo. Study on temperature characteristics of LaBr3 detector. Nuclear Electronics & Detection Technology, 2013, 33(2): 188−190 (in Chinese)

[101] Z. Ye. Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: Properties and present understanding. Ferroelectrics, 1996, 184(1): 193−208 link1

[102] D. Viehland. Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3-PbTiO3 crystals. J. Appl. Phys., 2000, 88(8): 4794−4806 link1

[103] G. A. Smolensky. Physical phenomena in ferroelectrics with diffused phase transition. J. Phys. Soc. Jpn, 1970, 28(Suppl.): 26−37

[104] S. E. Park, T. R. Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys., 1997, 82(4): 1804−1811 link1

[105] K. Saitoh, Y. Ishimaru, H. Fuke, Y. Enomoto. A model analysis for current-voltage characteristics of superconducting weak links. Jpn. J. Appl. Phys., 1997, 36(Part 2, No. 3A): L272−L275 link1

[106] L. Liu, Dielectric, ferroelectric, and pyroelectric characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3–0.26PbTiO3 crystals for infrared detection applications. Appl. Phys. Lett., 2009, 95(19): 192903 link1

[107] A. Borisevich, Lead tungstate scintillation crystal with increased light yield for the PANDA electromagnetic calorimeter. Nucl. Instrum. Meth. A, 2005, 537(1−2): 101−104 link1

[108] S. Saitoh, M. Izumi, Y. Yamashita, S. Shimanuki, M. Kawachi, T. Kobayashi. Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe: US, 5402791A, 1995-04-04

[109] B. Ren, S. W. Or, X. Zhao, H. Luo. Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. J. Appl. Phys., 2010, 107(3): 034501 link1

[110] N. Neumann, M. Es-Souni, H. Luo. Application of pmN-PT in pyroelectric detectors. In: Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics. Xi’an, China, 2009: 1−3

[111] Y. Wang, S. W. Or, H. L. W. Chan, X. Zhao, H. Luo. Magnetoelectric effect from mechanically mediated torsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystal. Appl. Phys. Lett., 2008, 92(12): 123510 link1

[112] H. Luo, G. Xu, H. Xu, P. Wang, Z. Yin. Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified bridgman technique. Jpn. J. Appl. Phys., 2000, 39(Part 1, No. 9B): 5581−5585 link1

[113] P. Yu, Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary single crystal. Appl. Phys. Lett., 2008, 92(25): 252907 link1

[114] B. Gao, G. L. Yu, J. B. Li. Numerical simulation and experimental study on two-dimensional solid/fluid phononic crystals. J. Synth. Cryst., 2010, 39(3): 680−686

[115] Y. Gao, Evolution and structure of low-angle grain boundaries in 6H-SiC single crystals grown by sublimation method. J. Cryst. Growth, 2010, 312(20): 2909−2913 link1

Related Research