Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 3 doi: 10.15302/J-ENG-2015065

High-Throughput Multi-Plume Pulsed-Laser Deposition for Materials Exploration and Optimization

Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA

Received: 2015-07-01 Revised: 2015-07-13 Accepted: 2015-08-03 Available online: 2015-09-30

Next Previous

Abstract

A high-throughput multi-plume pulsed-laser deposition (MPPLD) system has been demonstrated and compared to previous techniques. Whereas most combinatorial pulsed-laser deposition (PLD) systems have focused on achieving thickness uniformity using sequential multilayer deposition and masking followed by post-deposition annealing, MPPLD directly deposits a compositionally varied library of compounds using the directionality of PLD plumes and the resulting spatial variations of deposition rate. This system is more suitable for high-throughput compound thin-film fabrication.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] I. Repins, 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl., 2008, 16(3): 235–239 link1

[ 2 ] M. A. Contreras, Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Prog. Photovolt. Res. Appl., 1999, 7(4): 311–316 link1

[ 3 ] A. Ennaoui, S. Siebentritt, M. Ch. Lux-Steiner, W. Riedl, F. Karg. High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers. Sol. Energ. Mat. Sol. C., 2001, 67(1−4): 31–40

[ 4 ] T. M. Chuang, Nematic electronic structure in the “parent” state of the iron-based superconductor Ca(Fe1−xCox)2As2. Science, 2010, 327(5962): 181–184 link1

[ 5 ] L. Gao, Superconductivity up to 164 K in HgBa2Cam−1CumO2m+ 2+ d(m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 1994, 50(6): 4260–4263

[ 6 ] R. B. Merrifield. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14): 2149–2154

[ 7 ] D. J. Ecker, S. T. Crooke. Combinatorial drug discovery: Which methods will produce the greatest value? Biotechnology (N.Y.), 1995, 13(4): 351–360 link1

[ 8 ] X. D. Xiang, A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738–1740 link1

[ 9 ] J. Wang, Identification of a blue photoluminescent composite material from a combinatorial library. Science, 1998, 279(5357): 1712–1714 link1

[10] G. Briceño, H. Chang, X. Sun, P. G. Schultz, X. D. Xiang. A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science, 1995, 270(5234): 273–275 link1

[11] D. Dijkkamp, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett., 1987, 51(8): 619–621 link1

[12] S. S. Mao. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123–130 link1

[13] S. S. Mao. High throughput combinatorial screening of semiconductor materials. Appl. Phys. A, 2011, 105(2): 283–288 link1

[14] P. K. Schenck, J. L. Klamo, N. D. Bassim, P. G. Burke, Y. B. Gerbig, M. L. Green. Combinatorial study of the crystallinity boundary in the HfO2-TiO2-Y2O3 system using pulsed laser deposition library thin films. Thin Solid Films, 2008, 517(2): 691–694 link1

[15] M. Tyunina, J. Wittborn, C. Björmander, K. V. Rao. Thickness distribution in pulsed laser deposited PZT films. J. Vac. Sci. Technol. A, 1998, 16(4): 2381–2384

[16] H. M. Christen, An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas. Rev. Sci. Instrum., 2003, 74(9): 4058–4062 link1

[17] I. Ohkubo, Continuous composition-spread thin films of transition metal oxides by pulsed-laser deposition. Appl. Surf. Sci., 2004, 223(1−3): 35–38 link1

[18] H. M. Christen, S. D. Silliman, K. S. Harshavardhan. A continuous compositional-spread technique based on pulsed-laser deposition and applied to the growth of epitaxial films. Rev. Sci. Instrum., 2001, 72(6): 2673–2678 link1

[19] L. Fister, D. C. Johnson. Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc., 1992, 114(12): 4639–4644

[20] K. Kennedy, T. Stefansky, G. Davy, V. F. Zackay, E. R. Parker. Rapid method for determining ternary-alloy phase diagrams. J. Appl. Phys., 1965, 36(12): 3808–3810

[21] J. J. Hanak. The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci., 1970, 5(11): 964–971

[22] J. D. Perkins, Combinatorial studies of Zn-Al-O and Zn-Sn-O transparent conducting oxide thin films. Thin Solid Films, 2002, 411(1): 152–160 link1

[23] R. B. van Dover, L. F. Schneemeyer, R. M. Fleming. Discovery of a useful thin-film dielectric using a composition-spread approach. Nature, 1998, 392(6672): 162–164 link1

[24] R. B. van Dover. Amorphous lanthanide-doped TiOx dielectric films. Appl. Phys. Lett., 1999, 74(20): 3041–3043 link1

[25] L. F. Schneemeyer, R. B. van Dover, R. M. Fleming. High dielectric constant Hf-Sn-Ti-O thin films. Appl. Phys. Lett., 1999, 75(13): 1967–1969 link1

[26] C. W. Teplin, Combinatorial study of reactively sputtered Cr-Ti-N. Appl. Surf. Sci., 2004, 223(1−3): 253–258 link1

[27] M. Tyunina, J. Wittborn, C. Björmander, K. V. Rao. Thickness distribution in pulsed laser deposited PZT films. J. Vac. Sci. Technol. A, 1998, 16(4): 2381–2384

[28] S. I. Anisimov, B. S. Luk’yanchuk, A. Luches. An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime. Appl. Surf. Sci., 1996, 96−98: 24–32

[29] S. I. Anisimov, B. S. Luk’yanchuk, A. Luches. Dynamics of the three-dimensional expansion in a vapor produced by a laser pulse. J. Exp. Theor. Phys., 1995, 81(1): 129–138

Related Research