Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 3 doi: 10.15302/J-ENG-2015072

Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood

1 Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2 Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
3 Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Received: 2015-07-27 Revised: 2015-08-26 Accepted: 2015-09-08 Available online: 2015-09-30

Next Previous

Abstract

Viral load measurements are an essential tool for the long-term clinical care of human immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a ~ 60 nL RT-LAMP droplet, corresponding to a whole blood concentration of 670 viruses per μL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] World Health Organization. HIV/AIDS fact sheet. 2014[2015-08-01]. http://www.who.int/mediacentre/factsheets/fs360/en/#

[ 2 ] World Health Organization, UNICEF, UNAIDS. Global Update on HIV Treatment 2013: Results, Impact and Opportunities. Geneva: WHO Press, 2013

[ 3 ] J. A. Aberg, J. E. Gallant, K. G. Ghanem, P. Emmanuel, B. S. Zingman, M. A. Horberg; Infectious Diseases Society of America. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin. Infect. Dis., 2014, 58(1): e1–e34 link1

[ 4 ] Alere. Alere PimaTM CD4. 2012[2015-05-05]. http://alerehiv.com/hiv-monitoring/alere-pima-cd4/

[ 5 ] Daktari Diagnostics. Products. 2013[2015-05-05]. http://www.daktaridx.com/products/

[ 6 ] G. L. Damhorst, N. N. Watkins, R. Bashir. Micro- and nanotechnology for HIV/AIDS diagnostics in resource-limited settings. IEEE Trans. Biomed. Eng., 2013, 60(3): 715–726 link1

[ 7 ] C. F. Rowley. Developments in CD4 and viral load monitoring in resource-limited settings. Clin. Infect. Dis., 2014, 58(3): 407–412 link1

[ 8 ] US Food and Drug Administration. Complete list of donor screening assays for infectious agents and HIV diagnostic assays. 2013

[ 9 ] US Food and Drug Administration. Vaccines, blood & biologics: HIV-1. 2010[2014-03-17]. http://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/BloodDonorScreening/InfectiousDisease/ucm126582.htm

[10] T. Peterson, M. Stuart. HIV Testing Overview. 2011[2014-03-17]. http://emedicine.medscape.com/article/1983649-overview

[11] X. Zhang, S. B. Lowe, J. J. Gooding. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron., 2014, 61: 491–499 link1

[12] T. Notomi, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12): e63 link1

[13] M. P. de Baar, E. C. Timmermans, M. Bakker, E. de Rooij, B. van Gemen, J. Goudsmit. One-tube real-time isothermal amplification assay to identify and distinguish human immunodeficiency virus type 1 subtypes A, B, and C and circulating recombinant forms AE and AG. J. Clin. Microbiol., 2001, 39(5): 1895–1902 link1

[14] M. P. de Baar, Single rapid real-time monitored isothermal RNA amplification assay for quantification of human immunodeficiency virus type 1 isolates from groups M, N, and O. J. Clin. Microbiol., 2001, 39(4): 1378–1384 link1

[15] K. A. Curtis, D. L. Rudolph, S. M. Owen. Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP). J. Virol. Methods, 2008, 151(2): 264–270 link1

[16] C. Liu, An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst (Lond.), 2011, 136(10): 2069–2076 link1

[17] K. A. Curtis, Isothermal amplification using a chemical heating device for point-of-care detection of HIV-1. PLoS ONE, 2012, 7(2): e31432 link1

[18] K. A. Curtis, P. L. Niedzwiedz, A. S. Youngpairoj, D. L. Rudolph, S. M. Owen. Real-time detection of HIV-2 by reverse transcription-loop-mediated isothermal amplification. J. Clin. Microbiol., 2014, 52(7): 2674–2676 link1

[19] C. Liu, Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal. Chem., 2013, 85(21): 10463–10470 link1

[20] F. B. Myers, R. H. Henrikson, J. M. Bone, L. P. Lee. A handheld point-of-care genomic diagnostic system. PLoS ONE, 2013, 8(8): e70266 link1

[21] B. Sun, F. Shen, S. E. McCalla, J. E. Kreutz, M. A. Karymov, R. F. Ismagilov. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol. Anal. Chem., 2013, 85(3): 1540–1546 link1

[22] N. N. Watkins, Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci. Transl. Med., 2013, 5(214): 214ra170 link1

[23] C. Duarte, E. Salm, B. Dorvel, B. Reddy Jr., R. Bashir. On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification. Biomed. Microdevices, 2013, 15(5): 821–830 link1

[24] P. Khlebovich. IP Webcam. 2015

[25] G. L. Damhorst, M. Murtagh, W. R. Rodriguez, R. Bashir. Microfluidics and nanotechnology for detection of global infectious diseases. P. IEEE, 2015, 103(2): 150–160 link1

[26] G. Jenkins, C. D. Mansfield. Microfluidic Diagnostics: Methods and Protocols. New York: Humana Press, 2013

[27] C. D. Chin, V. Linder, S. K. Sia. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip, 2012, 12(12): 2118–2134 link1

[28] S. Y. Teh, R. Lin, L. H. Hung, A. P. Lee. Droplet microfluidics. Lab Chip, 2008, 8(2): 198–220 link1

[29] The World Bank. Mobile phone access reaches three quarters of planet’s population. 2012[2015-05-22]. http://www.worldbank.org/en/news/press-release/2012/07/17/mobile-phone-access-reaches-three-quarters-planets-population

[30] A. S. F. Lok, B. J. McMahon. Chronic hepatitis B: Update 2009. Hepatology, 2009, 50(3): 661–662 link1

[31] M. Baker. Digital PCR hits its stride. Nat. Methods, 2012, 9(6): 541–544 link1

[32] Y. Chander, A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front. Microbiol., 2014, 5: 395

[33] C. C. Boehme, Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J. Clin. Microbiol., 2007, 45(6): 1936–1940 link1

[34] A. C. Hatch, 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip, 2011, 11(22): 3838–3845 link1

[35] R. H. Sedlak, K. R. Jerome. Viral diagnostics in the era of digital polymerase chain reaction. Diagn. Microbiol. Infect. Dis., 2013, 75(1): 1–4 link1

[36] K. A. Heyries, Megapixel digital PCR. Nat. Methods, 2011, 8(8): 649–651 link1

[37] C. M. Hindson, Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods, 2013, 10(10): 1003–1005 link1

[38] R. A. White III, S. R. Quake, K. Curr. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J. Virol. Methods, 2012, 179(1): 45–50 link1

[39] F. Shen, W. Du, J. E. Kreutz, A. Fok, R. F. Ismagilov. Digital PCR on a SlipChip. Lab Chip, 2010, 10(20): 2666–2672 link1

[40] M. Pai, M. Ghiasi, N. P. Pai. Point-of-care diagnostic testing in global health: What is the point? Microbe, 2015, 10(3): 103–107

Related Research