Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 3 doi: 10.15302/J-ENG-2015075

Big Data for Precision Medicine

The Hamlyn Centre, South Kensington Campus, Imperial College London, London SW7 2AZ, UK

Available online: 2015-09-30

Next Previous

Abstract

This article focuses on the potential impact of big data analysis to improve health, prevent and detect disease at an earlier stage, and personalize interventions. The role that big data analytics may have in interrogating the patient electronic health record toward improved clinical decision support is discussed. We examine developments in pharmacogenetics that have increased our appreciation of the reasons why patients respond differently to chemotherapy. We also assess the expansion of online health communications and the way in which this data may be capitalized on in order to detect public health threats and control or contain epidemics. Finally, we describe how a new generation of wearable and implantable body sensors may improve wellbeing, streamline management of chronic diseases, and improve the quality of surgical implants.

References

[ 1 ] J. Andreu-Perez, C. C. Poon, R. D. Merrifield, S. T. Wong, G. Z. Yang. Big data for health. IEEE J. Biomed. Health Inform., 2015, 19(4): 1193–1208 link1

[ 2 ] L. Hood, M. Flores. A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. New Biotechnol., 2012, 29(6): 613–624 link1

[ 3 ] J. G. Klann, V. Anand, S. M. Downs. Patient-tailored prioritization for a pediatric care decision support system through machine learning. J. Am. Med. Inform. Assoc., 2013, 20(e2): e267–e274

[ 4 ] B. G. Nair, S. F. Newman, G. N. Peterson, W. Y. Wu, H. A. Schwid. Feedback mechanisms including real-time electronic alerts to achieve near 100% timely prophylactic antibiotic administration in surgical cases. Anesth. Analg., 2010, 111(5): 1293–1300 link1

[ 5 ] K. B. Wagholikar, Clinical decision support with automated text processing for cervical cancer screening. J. Am. Med. Inform. Assoc., 2012, 19(5): 833–839

[ 6 ] J. Futoma, J. Morris, J. Lucas. A comparison of models for predicting early hospital readmissions. J. Biomed. Inform., 2015, 56: 229–238 link1

[ 7 ] K. Mei, J. Peng, L. Gao, N. N. Zheng, J. Fan. Hierarchical classification of large-scale patient records for automatic treatment stratification. IEEE J. Biomed. Health Inform., 2015, 19(4): 1234–1245 link1

[ 8 ] M. P. Goetz, The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res. Tr., 2007, 101(1): 113–121 link1

[ 9 ] B. Sen, Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci. Transl. Med., 2012, 4(136): 136ra70

[10] T. Watanabe, T. Kobunai, T. Akiyoshi, K. Matsuda, S. Ishihara, K. Nozawa. Prediction of response to preoperative chemoradiotherapy in rectal cancer by using reverse transcriptase polymerase chain reaction analysis of four genes. Dis. Colon Rectum, 2014, 57(1): 23–31 link1

[11] Cancer Genome Atlas Research Network; J. N. Weinstein, The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet., 2013, 45(10): 1113–1120 link1

[12] J. Barretina, The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391): 603–607 link1

[13] M. J. Garnett, Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012, 483(7391): 570–575 link1

[14] J. Sheng, F. Li, S. T. Wong. Optimal drug prediction from personal genomics profiles. IEEE J. Biomed. Health Inform., 2015, 19(4): 1264–1270

[15] Anon. TuAnalyze is here! 2010-05-19. http://www.tudiabetes.org/forum/topics/tuanalyze-is-here

[16] S. Ram, W. Zhang, M. Williams, Y. Pengetnze. Predicting asthma-related emergency department visits using big data. IEEE J. Biomed. Health Inform., 2015, 19(4): 1216–1223

[17] M. Odlum, S. Yoon. What can we learn about the Ebola outbreak from tweets? Am. J. Infect. Control, 2015, 43(6): 563–571 link1

[18] S. Bahkali, N. Alkharjy, M. Alowairdy, M. Househ, O. Da’ar, K. Alsurimi. A social media campaign to promote breastfeeding among Saudi women: A web-based survey study. Stud. Health Technol. Inform., 2015, 213: 247–250

[19] G. Z. Yang. Body Sensor Networks. 2nd ed. London: Springer-Verlag, 2014

[20] F. Rincón, P. R. Grassi, N. Khaled, D. Atienza, D. Sciuto. Automated real-time atrial fibrillation detection on a wearable wireless sensor platform. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ: IEEE Service Center, 2012: 2472–2745

[21] M. M. Ahmadi, G. A. Jullien. A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst., 2009, 3(3): 169–180 link1

[22] J. Padwal, M. M. Georgy, B. A. Georgy. Spinal cord stimulators in an outpatient interventional neuroradiology practice. J. Neurointerv. Surg., 2014, 6(9): 708–711 link1

[23] M. K. Moore, S. Fulop, M. Tabib-Azar, D. J. Hart. Piezoresistive pressure sensors in the measurement of intervertebral disc hydrostatic pressure. Spine J., 2009, 9(12): 1030–1034 link1

Related Research