Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 3 doi: 10.15302/J-ENG-2015077

Characterizing Thermal Augmentation of Convection-Enhanced Drug Delivery with the Fiberoptic Microneedle Device

1 Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
2 Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA
3 School of Biomedical Engineering, Virginia Tech, Blacksburg, VA 24060, USA
4 Department of Mechanical Engineering, University of Texas, Austin, TX 78712, USA

Received: 2015-08-01 Revised: 2015-08-21 Accepted: 2015-09-04 Available online: 2015-09-30

Next Previous

Abstract

Convection-enhanced delivery (CED) is a promising technique leveraging pressure-driven flow to increase penetration of infused drugs into interstitial spaces. We have developed a fiberoptic microneedle device for inducing local sub-lethal hyperthermia to further improve CED drug distribution volumes, and this study seeks to quantitatively characterize this approach in agarose tissue phantoms. Infusions of dye were conducted in 0.6% (w/w) agarose tissue phantoms with isothermal conditions at 15 °C, 20 °C, 25 °C, and 30 °C. Infusion metrics were quantified using a custom shadowgraphy setup and image-processing algorithm. These data were used to build an empirical predictive temporal model of distribution volume as a function of phantom temperature. A second set of proof-of-concept experiments was conducted to evaluate a novel fiberoptic device capable of generating local photothermal heating during fluid infusion. The isothermal infusions showed a positive correlation between temperature and distribution volume, with the volume at 30 °C showing a 7-fold increase at 100 min over the 15 °C isothermal case. Infusions during photothermal heating (1064 nm at 500 mW) showed a similar effect with a 3.5-fold increase at 4 h over the control (0 mW). These results and analyses serve to provide insight into and characterization of heat-mediated enhancement of volumetric dispersal.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] C. V. Pardeshi, V. S. Belgamwar. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv., 2013, 10(7): 957–972 link1

[ 2 ] B. S. Bleier, R. E. Kohman, R. E. Feldman, S. Ramanlal, X. Han. Permeabilization of the blood-brain barrier via mucosal engrafting: Implications for drug delivery to the brain. PLoS One, 2013, 8(4): e61694 link1

[ 3 ] M. Aryal, C. D. Arvanitis, P. M. Alexander, N. McDannold. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev., 2014, 72: 94–109 link1

[ 4 ] F. Dilnawaz, A. Singh, S. Mewar, U. Sharma, N. R. Jagannathan, S. K. Sahoo. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials, 2012, 33(10): 2936–2951 link1

[ 5 ] P. A. Garcia, 7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation. PLoS One, 2012, 7(11): e50482 link1

[ 6 ] D. W. Laske, R. J. Youle, E. H. Oldfield. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat. Med., 1997, 3(12): 1362–1368 link1

[ 7 ] R. H. Bobo, D. W. Laske, A. Akbasak, P. F. Morrison, R. L. Dedrick, E. H. Oldfield. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. U.S.A., 1994, 91(6): 2076–2080 link1

[ 8 ] K. S. Bankiewicz, Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol., 2000, 164(1): 2–14 link1

[ 9 ] L. C. Vazquez, Polymer-coated cannulas for the reduction of backflow during intraparenchymal infusions. J. Mater. Sci. Mater. Med., 2012, 23(8): 2037–2046

[10] S. S. Gill, Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med., 2003, 9(5): 589–595 link1

[11] M. A. Rogawski. Convection-enhanced delivery in the treatment of epilepsy. Neurotherapeutics, 2009, 6(2): 344–351 link1

[12] J. H. Sampson, Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: Descriptive effects of target anatomy and catheter positioning. Neurosurgery, 2007, 60(2 Suppl 1): ONS89-98; discussion ONS98-9

[13] J. F. Hamilton, Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin. Exp. Neurol., 2001, 168(1): 155–161 link1

[14] A. A. Kanner. Convection-enhanced delivery.In: G. H. Barnett, ed. High-Grade Gliomas: Diagnosis and Treatment. Totowa, NJ: Humana Press, 2007: 303–314

[15] W. A. Vandergrift, S. J. Patel, J. S. Nicholas, A. K. Varma. Convection-enhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas. Neurosurg. Focus, 2006, 20(4): E13 link1

[16] M. Bettag, Stereotactic laser therapy in cerebral gliomas. Acta Neurochir. Suppl. (Wien), 1991, 52: 81–83 link1

[17] A. Carpentier, MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg. Med., 2012, 44(5): 361–368 link1

[18] H. J. Schwarzmaier, I. V. Yaroslavsky, A. N. Yaroslavsky, V. Fiedler, F. Ulrich, T. Kahn. Treatment planning for MRI-guided laser-induced interstitial thermotherapy of brain tumors—The role of blood perfusion. J. Magn. Reson. Imaging, 1998, 8(1): 121–127 link1

[19] A. Carpentier, Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery, 2008, 63(1 Suppl 1): ONS21-8; discussion ONS28-9

[20] R. J. Stafford, D. Fuentes, A. A. Elliott, J. S. Weinberg, K. Ahrar. Laser-induced thermal therapy for tumor ablation. Crit. Rev. Biomed. Eng., 2010, 38(1): 79–100 link1

[21] C. G. Hadjipanayis, EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res., 2010, 70(15): 6303–6312 link1

[22] J. H. Sampson, , and PRECISE Trial Investigators. Poor drug distribution as a possible explanation for the results of the PRECISE trial. J. Neurosurg., 2010, 113(2): 301–309 link1

[23] R. Hamazoe, M. Maeta, N. Kaibara. Intraperitoneal thermochemotherapy for prevention of peritoneal recurrence of gastric cancer. Final results of a randomized controlled study. Cancer, 1994, 73(8): 2048–2052 link1

[24] Y. Liu, Ultrasound-induced hyperthermia increases cellular uptake and cytotoxicity of P-glycoprotein substrates in multi-drug resistant cells. Pharm. Res., 2001, 18(9): 1255–1261 link1

[25] A. H. Saad, G. M. Hahn. Ultrasound-enhanced effects of adriamycin against murine tumors. Ultrasound Med. Biol., 1992, 18(8): 715–723 link1

[26] J. B. Block, P. A. Harris, A. Peale. Preliminary observations on temperature-enhanced drug uptake by leukemic leukocytes in vitro. Cancer Chemother. Rep., 1975, 59(5): 985–988

[27] M. R. DeWitt, A. M. Pekkanen, J. Robertson, C. G. Rylander, M. Nichole Rylander. Influence of hyperthermia on efficacy and uptake of carbon nanohorn-cisplatin conjugates. J. Biomech. Eng., 2014, 136(2): 021003 link1

[28] R. L. Hood, R. T. Andriani Jr., S. Emch, J. L. Robertson, C. G. Rylander, J. H. Rossmeisl Jr. Fiberoptic microneedle device facilitates volumetric infusate dispersion during convection-enhanced delivery in the brain. Lasers Surg. Med., 2013, 45(7): 418–426 link1

[29] M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, C. G. Rylander. Fiber optic microneedles for transdermal light delivery: Ex vivo porcine skin penetration experiments. J. Biomech. Eng., 2010, 132(9): 091014 link1

[30] M. A. Kosoglu, Fiberoptic microneedles for microscale interstitial delivery of therapeutic light. Laser. Surg. Med., 2011, 43(9): 914–920 link1

[31] R. L. Hood, M. A. Kosoglu, M. Parker, C. G. Rylander. Effects of microneedle design parameters on hydraulic resistance. J. Med. Device., 2011, 5(3): 31012–31016 link1

[32] Z. J. Chen, A realistic brain tissue phantom for intraparenchymal infusion studies. J. Neurosurg., 2004, 101(2): 314–322 link1

[33] T. Gill, In vitro and in vivo testing of a novel recessed-step catheter for reflux-free convection-enhanced drug delivery to the brain. J. Neurosci. Methods, 2013, 219(1): 1–9 link1

[34] R. L. Hood, T. Ecker, R. Andriani, J. Robertson, J. Rossmeisl, C. G. Rylander. Augmenting convection-enhanced delivery through simultaneous co-delivery of fluids and laser energy with a fiberoptic microneedle device. In: I. Gannot, ed. Proceedings of SPIE 8576: Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIII. San Francisco, CA, USA, 2013

[35] F. Casanova, P. R. Carney, M. Sarntinoranont. Influence of needle insertion speed on backflow for convection-enhanced delivery. J. Biomech. Eng., 2012, 134(4): 041006 link1

[36] W. Martanto, J. S. Moore, T. Couse, M. R. Prousnitz. Mechanism of fluid infusion during microneedle insertion and retraction. J. Contrd. Release, 2006, 112(37): 357–361 link1

[37] Z. J. Chen, W. C. Broaddus, R. R. Viswanathan, R. Raghavan, G. T. Gillies. Intraparenchymal drug delivery via positive-pressure infusion: Experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans. Biomed. Eng., 2002, 49(2): 85–96 link1

[38] Z. J. Chen, W. C. Broaddus, R. R. Viswanathan, R. Raghavan, G. T. Gillies. Intraparenchymal drug delivery via positive-pressure infusion: Experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans. Biomed. Eng., 2002, 49(2): 85–96 link1

[39] G. T. Gillies, J. H. Smith, J. A. Humphrey, W. C. Broaddus. Positive pressure infusion of therapeutic agents into brain tissues: Mathematical and experimental simulations. Technol. Health Care, 2005, 13(4): 235–243

[40] S. J. Panse, H. L. Fillmore, Z. J. Chen, G. T. Gillies, W. C. Broaddus. A novel coaxial tube catheter for central nervous system infusions: Performance characteristics in brain phantom gel. J. Med. Eng. Technol., 2010, 34(7−8): 408–414

Related Research