Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 3 doi: 10.15302/J-ENG-2015082

Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity

Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

# Parallel first authors.

Received: 2015-08-06 Revised: 2015-09-06 Accepted: 2015-09-10 Available online: 2015-09-30

Next Previous

Abstract

Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging (CLI), and optical image-guided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig.8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

References

[ 1 ] J. R. Conway, N. O. Carragher, P. Timpson. Developments in preclinical cancer imaging: Innovating the discovery of therapeutics. Nat. Rev. Cancer, 2014, 14(5): 314–328 link1

[ 2 ] T. Maldiney, The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater., 2014, 13(4): 418–426 link1

[ 3 ] S. I. Ellenbroek, J. van Rheenen. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer, 2014, 14(6): 406–418 link1

[ 4 ] R. Weissleder, M. J. Pittet. Imaging in the era of molecular oncology. Nature, 2008, 452(7187): 580–589 link1

[ 5 ] Z. Hu, From PET/CT to PET/MRI: Advances in instrumentation and clinical applications. Mol. Pharm., 2014, 11(11): 3798–3809 link1

[ 6 ] J. S. Reynolds, Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem. Photobiol., 1999, 70(1): 87–94 link1

[ 7 ] U. Mahmood, C. H. Tung, A. Bogdanov Jr., R. Weissleder. Near-infrared optical imaging of protease activity for tumor detection. Radiology, 1999, 213(3): 866–870 link1

[ 8 ] M. Yang, Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. U.S.A., 2000, 97(3): 1206–1211 link1

[ 9 ] V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol., 2005, 23(3): 313–320 link1

[10] C. Qin, Recent advances in bioluminescence tomography: Methodology and system as well as application. Laser Photonics Rev., 2014, 8(1): 94–114 link1

[11] V. Ntziachristos. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods, 2010, 7(8): 603–614 link1

[12] F. Leuschner, M. Nahrendorf. Molecular imaging of coronary atherosclerosis and myocardial infarction: Considerations for the bench and perspectives for the clinic. Circ. Res., 2011, 108(5): 593–606 link1

[13] S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy. A finite element approach for modeling photon transport in tissue. Med. Phys., 1993, 20(2): 299–309 link1

[14] H. L. Graber, R. L. Barbour. High-resolution near-infrared (NIR) imaging of dense scattering media by diffusion tomography. Faseb J., 1993, 7: A720

[15] J. C. Schotland, J. S. Leigh. Photon diffusion imaging. Faseb J., 1992, 6: A446–A446

[16] A. Yodh, B. Chance. Spectroscopy and imaging with diffusing light. Phys. Today, 1995, 48(3): 34–40

[17] M. S. Patterson, B. Chance, B. C. Wilson. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt., 1989, 28(12): 2331–2336 link1

[18] B. Chance. Optical method. Annu. Rev. Biophys. Biophys. Chem., 1991, 20: 1–28 link1

[19] F. F. Jöbsis. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977, 198(4323): 1264–1267 link1

[20] A. M. Smith, M. C. Mancini, S. Nie. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol., 2009, 4(11): 710–711 link1

[21] R. Weissleder. A clearer vision for in vivo imaging. Nat. Biotechnol., 2001, 19(4): 316–317 link1

[22] D. Zhu, C. Li. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement. Phys. Med. Biol., 2014, 59(12): 2901–2912 link1

[23] D. Han, A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization. Opt. Express, 2010, 18(8): 8630–8646 link1

[24] K. Liu, Tomographic bioluminescence imaging reconstruction via a dynamically sparse regularized global method in mouse models. J. Biomed. Opt., 2011, 16(4): 046016 link1

[25] Y. Lv, A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt. Express, 2006, 14(18): 8211–8223 link1

[26] J. Zhong, J. Tian, X. Yang, C. Qin. Whole-body Cerenkov luminescence tomography with the finite element SP(3) method. Ann. Biomed. Eng., 2011, 39(6): 1728–1735 link1

[27] X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, J. Tian. Probability method for Cerenkov luminescence tomography based on conformance error minimization. Biomed. Opt. Express, 2014, 5(7): 2091–2112 link1

[28] A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, V. Ntziachristos. FMT-XCT: In vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat. Methods, 2012, 9(6): 615–620 link1

[29] P. Mohajerani, FMT-PCCT: Hybrid fluorescence molecular tomography-X-ray phase-contrast CT imaging of mouse models. IEEE Trans. Med. Imaging, 2014, 33(7): 1434–1446 link1

[30] S. C. Davis, Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev. Sci. Instrum., 2008, 79(6): 064302 link1

[31] M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca. Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography. Proc. Natl. Acad. Sci. U.S.A., 2002, 99(15): 9619–9624 link1

[32] X. Gu, Q. Zhang, L. Larcom, H. Jiang. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express, 2004, 12(17): 3996–4000 link1

[33] C. Li, G. S. Mitchell, S. R. Cherry. Cerenkov luminescence tomography for small-animal imaging. Opt. Lett., 2010, 35(7): 1109–1111 link1

[34] K. Liu, Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models. Opt. Express, 2010, 18(20): 20988–21002 link1

[35] H. Liu, Multispectral hybrid Cerenkov luminescence tomography based on the finite element SPn method. J. Biomed. Opt., 2015, 20(8): 086007 link1

[36] D. Zhu, C. Li. Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets. Biomed. Opt. Express, 2014, 5(12): 4249–4259 link1

[37] D. Wang, X. Song, J. Bai. Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution. Opt. Express, 2007, 15(15): 9722–9730 link1

[38] N. Cao, A. Nehorai, M. Jacobs. Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm. Opt. Express, 2007, 15(21): 13695–13708 link1

[39] J. Dutta, S. Ahn, C. Li, S. R. Cherry, R. M. Leahy. Joint L1 and total variation regularization for fluorescence molecular tomography. Phys. Med. Biol., 2012, 57(6): 1459–1476 link1

[40] D. Han, Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation. IEEE Trans. Biomed. Eng., 2010, 57(10): 2564–2567 link1

[41] J. Shi, F. Liu, G. Zhang, J. Luo, J. Bai. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm. J. Biomed. Opt., 2014, 19(4): 046018 link1

[42] P. Wu, Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging. J. Biomed. Opt., 2012, 17(12): 126012 link1

[43] P. Wu, Y. Hu, K. Wang, J. Tian. Bioluminescence tomography by an iterative reweighted (l)2 norm optimization. IEEE Trans. Biomed. Eng., 2014, 61(1): 189–196 link1

[44] S. C. Davis, Dynamic dual-tracer MRI-guided fluorescence tomography to quantify receptor density in vivo. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(22): 9025–9030 link1

[45] X. Ma, SM5-1-conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted hepatocellular carcinoma imaging and therapy. Biomaterials, 2014, 35(9): 2878–2889 link1

[46] Y. Liu, S. J. Redmond, N. Wang, F. Blumenkron, M. R. Narayanan, N. H. Lovell. Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation. IEEE Trans. Biomed. Eng., 2011, 58(8): 2308–2315 link1

[47] X. Liu, B. Zhang, J. Luo, J. Bai. 4-D reconstruction for dynamic fluorescence diffuse optical tomography. IEEE Trans. Med. Imaging, 2012, 31(11): 2120–2132 link1

[48] F. Leuschner, Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol., 2011, 29(11): 1005–1010 link1

[49] Y. Lin, D. Thayer, O. Nalcioglu, G. Gulsen. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography. J. Biomed. Opt., 2011, 16(10): 106015 link1

[50] K. M. Tichauer, Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging. Nat. Med., 2014, 20(11): 1348–1353 link1

[51] Q. Zhang, Y. Du, Z. Xue, C. Chi, X. Jia, J. Tian. Comprehensive evaluation of the anti-angiogenic and anti-neoplastic effects of Endostar on liver cancer through optical molecular imaging. PLoS ONE, 2014, 9(1): e85559 link1

[52] C. H. Contag, M. H. Bachmann. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng., 2002, 4: 235–260 link1

[53] M. Keyaerts, V. Caveliers, T. Lahoutte. Bioluminescence imaging: Looking beyond the light. Trends Mol. Med., 2012, 18(3): 164–172 link1

[54] K. Hochgräfe, E. M. Mandelkow. Making the brain glow: In vivo bioluminescence imaging to study neurodegeneration. Mol. Neurobiol., 2013, 47(3): 868–882 link1

[55] M. F. Kircher, A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med., 2012, 18(5): 829–834 link1

[56] A. G. Bell. On the production and reproduction of sound by light. Am. J. Sci., 1880, s3-20(118): 305–324

[57] S. Zackrisson, S. M. van de Ven, S. S. Gambhir. Light in and sound out: Emerging translational strategies for photoacoustic imaging. Cancer Res., 2014, 74(4): 979–1004 link1

[58] L. V. Wang, L. Gao. Photoacoustic microscopy and computed tomography: From bench to bedside. Annu. Rev. Biomed. Eng., 2014, 16: 155–185 link1

[59] L. V. Wang, S. Hu. Photoacoustic tomography: In vivo imaging from organelles to organs. Science, 2012, 335(6075): 1458–1462 link1

[60] A. Taruttis, V. Ntziachristos. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics, 2015, 9(4): 219–227 link1

[61] G. Hong, Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med., 2012, 18(12): 1841–1846 link1

[62] G. Hong, Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun., 2014, 5: 4206

[63] G. Hong, Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics, 2014, 8(9): 723–730 link1

[64] R. K. O’Reilly, C. J. Hawker, K. L. Wooley. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem. Soc. Rev., 2006, 35(11): 1068–1083

[65] L. M. Ensign, Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci. Transl. Med., 2012, 4(138): 138ra79

[66] J. Ezzati Nazhad Dolatabadi, H. Valizadeh, H. Hamishehkar. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs. Adv. Pharm. Bull., 2015, 5(2): 151–159 link1

[67] X. Q. Zhang, X. Xu, R. Lam, D. Giljohann, D. Ho, C. A. Mirkin. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates. ACS Nano, 2011, 5(9): 6962–6970 link1

[68] K. M. Gharpure, S. Y. Wu, C. Li, G. Lopez-Berestein, A. K. Sood. Nanotechnology: Future of oncotherapy. Clin. Cancer Res., 2015, 21(14): 3121–3130 link1

[69] D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H. G. Löhmannsröben, N. Hildebrandt. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem. Int. Ed. Engl., 2010, 49(8): 1396–1401 link1

[70] H. Meng, Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano, 2011, 5(5): 4131–4144 link1

[71] H. Meng, Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2): 994–1005 link1

[72] R. Qiao, Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles. ACS Nano, 2015, 9(2): 2120–2129 link1

[73] K. Ajima, Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano, 2008, 2(10): 2057–2064 link1

[74] V. N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi. The properties and applications of nanodiamonds. Nat. Nanotechnol., 2012, 7(1): 11–23

[75] D. L. J. Thorek, A. Ogirala, B. J. Beattie, J. Grimm. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med., 2013, 19(10): 1345–1350 link1

[76] H. Liu, Molecular optical imaging with radioactive probes. PLoS ONE, 2010, 5(3): e9470 link1

[77] A. Ruggiero, J. P. Holland, J. S. Lewis, J. Grimm. Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med., 2010, 51(7): 1123–1130

[78] A. E. Spinelli, First human Cerenkography. J. Biomed. Opt., 2013, 18(2): 020502 link1

[79] D. L. J. Thorek, C. C. Riedl, J. Grimm. Clinical Cerenkov luminescence imaging of 18F-FDG. J. Nucl. Med., 2014, 55(1): 95–98

[80] Z. Hu, In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat. Commun., 2015, 6: 7560 link1

[81] R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, D. Piwnica-Worms. Cerenkov radiation energy transfer (CRET) imaging: A novel method for optical imaging of PET isotopes in biological systems. PLoS ONE, 2010, 5(10): e13300 link1

[82] H. Liu, X. Zhang, B. Xing, P. Han, S. S. Gambhir, Z. Cheng. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small, 2010, 6(10): 1087–1091 link1

[83] Y. Bernhard, B. Collin, R. A. Decréau. Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fluorophore with a built-in radionuclide. Chem. Commun. (Camb.), 2014, 50(51): 6711–6713 link1

[84] H. Hu, PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters. Biomaterials, 2014, 35(37): 9868–9876 link1

[85] X. Sun, Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J. Am. Chem. Soc., 2014, 136(5): 1706–1709

[86] W. Guo, Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: Improved radiochemical stability and controllable Cerenkov luminescence. ACS Nano, 2015, 9(1): 488–495 link1

[87] X. Cao, Intensity enhanced Cerenkov luminescence imaging using terbium-doped Gd2O2S microparticles. ACS Appl. Mater. Interfaces, 2015, 7(22): 11775–11782 link1

[88] I. Veronese, Infrared luminescence for real time ionizing radiation detection. Appl. Phys. Lett., 2014, 105(6): 061103 link1

[89] Y. Wang, Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett., 2013, 13(2): 581–585 link1

[90] C. M. Carpenter, C. Sun, G. Pratx, H. Liu, Z. Cheng, L. Xing. Radioluminescent nanophosphors enable multiplexed small-animal imaging. Opt. Express, 2012, 20(11): 11598–11604 link1

[91] C. Sun, Synthesis and radioluminescence of PEGylated Eu3+-doped nanophosphors as bioimaging probes. Adv. Mater., 2011, 23(24): H195–H199 link1

[92] O. Volotskova, Efficient radioisotope energy transfer by gold nanoclusters for molecular imaging. Small, 2015, 11(32): 4002–4008 link1

[93] J. Li, L. W. Dobrucki, M. Marjanovic, E. J. Chaney, K. S. Suslick, S. A. Boppart. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Phys. Med. Biol., 2015, 60(2): 727–739 link1

[94] X. Ma, Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles. PLoS ONE, 2013, 8(10): e77926 link1

[95] R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, M. D. Silva. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol., 2009, 54(16): N355–N365 link1

[96] S. R. Kothapalli, H. Liu, J. C. Liao, Z. Cheng, S. S. Gambhir. Endoscopic imaging of Cerenkov luminescence. Biomed. Opt. Express, 2012, 3(6): 1215–1225 link1

[97] H. Liu, Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: A feasibility experimental study. J. Nucl. Med., 2012, 53(10): 1579–1584

[98] J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, J. Grimm. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol. Imaging, 2011, 10(3): 177–186

[99] D. L. J. Thorek, Positron lymphography: Multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG. J. Nucl. Med., 2012, 53(9): 1438–1445

[100] C. Li, G. S. Mitchell, S. R. Cherry. Cerenkov luminescence tomography for small-animal imaging. Opt. Lett., 2010, 35(7): 1109–1111 link1

[101] Z. Hu, Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt. Express, 2010, 18(24): 24441–24450 link1

[102] A. E. Spinelli, Multispectral Cerenkov luminescence tomography for small animal optical imaging. Opt. Express, 2011, 19(13): 12605–12618 link1

[103] J. Zhong, J. Tian, X. Yang, C. Qin. Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann. Biomed. Eng., 2011, 39(6): 1728–1735 link1

[104] J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, J. Tian. Fast-specific tomography imaging via Cerenkov emission. Mol. Imaging Biol., 2012, 14(3): 286–292 link1

[105] B. J. Hillman, J. C. Goldsmith. The uncritical use of high-tech medical imaging. N. Engl. J. Med., 2010, 363(1): 4–6

[106] G. M. van Dam, Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med., 2011, 17(10): 1315–1319 link1

[107] M. B. Sturm, Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: First-in-human results. Sci. Transl. Med., 2013, 5(184): 184ra61

[108] S. L. Troyan, The FLARE intraoperative near-infrared fluorescence imaging system: A first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol., 2009, 16(10): 2943–2952 link1

[109] B. Chance. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. N.Y. Acad. Sci., 1998, 838: 29–45 link1

[110] B. T. Phillips, Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: Results of a prospective trial. Plast. Reconstr. Surg., 2012, 129(5): 778e–788e link1

[111] C. Hirche, An experimental study to evaluate the Fluobeam 800 imaging system for fluorescence-guided lymphatic imaging and sentinel node biopsy. Surg. Innov., 2013, 20(5): 516–523 link1

[112] K. Yamauchi, H. Nagafuji, T. Nakamura, T. Sato, N. Kohno. Feasibility of ICG fluorescence-guided sentinel node biopsy in animal models using the HyperEye Medical System. Ann. Surg. Oncol., 2011, 18(7): 2042–2047 link1

[113] G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, V. Ntziachristos. Real-time intraoperative fluorescence imaging system using light-absorption correction. J. Biomed. Opt., 2009, 14(6): 064012 link1

[114] H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, F. W. van Leeuwen. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: Clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur. Urol., 2011, 60(4): 826–833 link1

[115] S. L. Troyan, The FLARE intraoperative near-infrared fluorescence imaging system: A first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol., 2009, 16(10): 2943–2952 link1

[116] S. Yamashita, Video-assisted thoracoscopic indocyanine green fluorescence imaging system shows sentinel lymph nodes in non-small-cell lung cancer. J. Thorac. Cardiovasc. Surg., 2011, 141(1): 141–144 link1

[117] G. Spinoglio, Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): A single-institutional prospective study. Surg. Endosc., 2013, 27(6): 2156–2162 link1

[118] M. S. Borofsky, Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int., 2013, 111(4): 604–610 link1

[119] T. Moroga, Thoracoscopic segmentectomy with intraoperative evaluation of sentinel nodes for stage I non-small cell lung cancer. Ann. Thorac. Cardiovasc. Surg., 2012, 18(2): 89–94 link1

[120] K. Gotoh, A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J. Surg. Oncol., 2009, 100(1): 75–79 link1

[121] J. S. D. Mieog, Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Breast Cancer Res. Treat., 2011, 128(3): 679–689 link1

[122] R. A. Cahill, M. Anderson, L. M. Wang, I. Lindsey, C. Cunningham, N. J. Mortensen. Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg. Endosc., 2012, 26(1): 197–204 link1

[123] Y. Liu, Near-infrared fluorescence goggle system with complementary metal-oxide-semiconductor imaging sensor and see-through display. J. Biomed. Opt., 2013, 18(10): 101303 link1

[124] M. A. Whitney, Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol., 2011, 29(4): 352–356 link1

[125] M. H. Park, Prototype nerve-specific near-infrared fluorophores. Theranostics, 2014, 4(8): 823–833 link1

[126] C. Chi, Intraoperative imaging-guided cancer surgery: From current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics, 2014, 4(11): 1072–1084 link1

[127] M. Hutteman, Clinical translation of ex vivo sentinel lymph node mapping for colorectal cancer using invisible near-infrared fluorescence light. Ann. Surg. Oncol., 2011, 18(4): 1006–1014 link1

[128] J. S. Mieog, Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann. Surg. Oncol., 2011, 18(9): 2483–2491 link1

[129] J. R. van der Vorst, Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer, 2013, 119(18): 3411–3418 link1

[130] J. R. van der Vorst, Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients. Oral Oncol., 2013, 49(1): 15–19 link1

[131] L. M. A. Crane, Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: A novel concept. Mol. Imaging Biol., 2011, 13(5): 1043–1049 link1

[132] M. Kijanka, Rapid optical imaging of human breast tumour xenografts using anti-HER2 VHHs site-directly conjugated to IRDye 800CW for image-guided surgery. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(11): 1718–1729 link1

[133] R. G. Pleijhuis, Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: Assessing intraoperative techniques in tissue-simulating breast phantoms. Eur. J. Surg. Oncol., 2011, 37(1): 32–39

[134] L. M. A. Crane, Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: First clinical results. Gynecol. Oncol., 2011, 120(2): 291–295 link1

[135] C. Chi, Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: From preclinical evaluation to clinical validation. PLoS ONE, 2013, 8(12): e83927 link1

[136] N. C. Munabi, O. B. Olorunnipa, D. Goltsman, C. H. Rohde, J. A. Ascherman. The ability of intra-operative perfusion mapping with laser-assisted indocyanine green angiography to predict mastectomy flap necrosis in breast reconstruction: A prospective trial. J. Plast. Reconstr. Aesthet. Surg., 2014, 67(4): 449–455 link1

[137] T. Sugie, Comparison of the indocyanine green fluorescence and blue dye methods in detection of sentinel lymph nodes in early-stage breast cancer. Ann. Surg. Oncol., 2013, 20(7): 2213–2218 link1

[138] J. Mohebali, L. J. Gottlieb, J. P. Agarwal. Further validation for use of the retrograde limb of the internal mammary vein in deep inferior epigastric perforator flap breast reconstruction using laser-assisted indocyanine green angiography. J. Reconstr. Microsurg., 2010, 26(2): 131–135 link1

[139] A. Peloso, Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer. HPB (Oxford), 2013, 15(12): 928–934 link1

[140] D. Gray, E. Kim, V. Cotero, P. Staudinger, S. Yazdanfar, C. T. Hehir. Compact fluorescence and white light imaging system for intraoperative visualization of nerves. In: Proceedings of SPIE—The International Society for Optical Engineering. Bellingham, WA: SPIE, The International Society for Optical Engineering, 2012: 8207

[141] S. Keereweer, Dual wavelength tumor targeting for detection of hypopharyngeal cancer using near-infrared optical imaging in an animal model. Int. J. Cancer, 2012, 131(7): 1633–1640 link1

[142] M. A. Whitney, Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol., 2011, 29(4): 352–356 link1

[143] M. H. Park, Prototype nerve-specific near-infrared fluorophores. Theranostics, 2014, 4(8): 823–833 link1

[144] M. D. Jafari, The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg. Endosc., 2013, 27(8): 3003–3008 link1

[145] J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, V. Ntziachristos. Concurrent video-rate color and near-infrared fluorescence laparoscopy. J. Biomed. Opt., 2013, 18(10): 101302 link1

[146] V. Venugopal, Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system. J. Biomed. Opt., 2013, 18(12): 126018 link1

[147] T. Hide, S. Yano, J. Kuratsu. Indocyanine green fluorescence endoscopy at endonasal transsphenoidal surgery for an intracavernous sinus dermoid cyst: Case report. Neurol. Med. Chir. (Tokyo), 2014, 54(12): 999–1003 link1

[148] M. Plante, Sentinel node mapping with indocyanine green and endoscopic near-infrared fluorescence imaging in endometrial cancer. A pilot study and review of the literature. Gynecol. Oncol., 2015, 137(3): 443–447 link1

[149] Y. Pan, Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci. Transl. Med., 2014, 6(260): 260ra148 link1

[150] K. Si, R. Fiolka, M. Cui. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation. Nat. Photonics, 2012, 6(10): 657–661 link1

Related Research