Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 4 doi: 10.15302/J-ENG-2015106

Conjugation with Acridines Turns Nuclear Localization Sequence into Highly Active Antimicrobial Peptide

1 Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
2 Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China

Received: 2015-10-13 Revised: 2015-11-22 Accepted: 2015-11-26 Available online: 2015-12-30

Next Previous

Abstract

The emergence of multidrug-resistant bacteria creates an urgent need for alternative antibiotics with new mechanisms of action. In this study, we synthesized a novel type of antimicrobial agent, Acr3-NLS, by conjugating hydrophobic acridines to the N-terminus of a nuclear localization sequence (NLS), a short cationic peptide. To further improve the antimicrobial activity of our agent, dimeric (Acr3-NLS)2 was simultaneously synthesized by joining two monomeric Acr3-NLS together via a disulfide linker. Our results show that Acr3-NLS and especially (Acr3-NLS)2 display significant antimicrobial activity against gram-negative and gram-positive bacteria compared to that of the NLS. Subsequently, the results derived from the study on the mechanism of action demonstrate that Acr3-NLS and (Acr3-NLS)2 can kill bacteria by membrane disruption and DNA binding. The double targets–cell membrane and intracellular DNA–will reduce the risk of bacteria developing resistance to Acr3-NLS and (Acr3-NLS)2. Overall, this study provides a novel strategy to design highly effective antimicrobial agents with a dual mode of action for infection treatment.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] M. S. Butler, M. A. Blaskovich, M. A. Cooper. Antibiotics in the clinical pipeline in 2013. J. Antibiot., 2013, 66(10): 571–591 link1

[ 2 ] C. W. Pouton, K. M. Wagstaff, D. M. Roth, G. W. Moseley, D. A. Jans. Targeted delivery to the nucleus. Adv. Drug Deliv. Rev., 2007, 59(8): 698–717 link1

[ 3 ] L. J. Brandén, A. J. Mohamed, C. I. Smith. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol., 1999, 17(8): 784–787 link1

[ 4 ] T. Shiraishi, R. Hamzavi, P. E. Nielsen. Targeted delivery of plasmid DNA into the nucleus of cells via nuclear localization signal peptide conjugated to DNA intercalating bis- and trisacridines. Bioconjug. Chem., 2005, 16(5): 1112–1116 link1

[ 5 ] N. Kobayashi, Y. Yamada, T. Yoshida. Nuclear translocation peptides as antibiotics. Antimicrob. Agents Chemother., 2006, 50(3): 1118–1119 link1

[ 6 ] J. Feigon, W. A. Denny, W. Leupin, D. R. Kearns. Interactions of antitumor drugs with natural DNA: 1H NMR study of binding mode and kinetics. J. Med. Chem., 1984, 27(4): 450–465

[ 7 ] R. Kumar, M. Kaur, M. Kumari. Acridine: A versatile heterocyclic nucleus. Acta Pol. Pharm., 2012, 69(1): 3–9

[ 8 ] G. Cholewiński, K. Dzierzbicka, A. M. Kołodziejczyk. Natural and synthetic acridines/acridones as antitumor agents: Their biological activities and methods of synthesis. Pharmacol. Rep., 2011, 63(2): 305–336 link1

[ 9 ] A. F. Valdés. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med. Chem. J., 2011, 5: 11–20

[10] M. Wainwright. Acridine—A neglected antibacterial chromophore. J. Antimicrob. Chemother., 2001, 47(1): 1–13

[11] S. Majumdar, T. J. Siahaan. Peptide-mediated targeted drug delivery. Med. Res. Rev., 2012, 32(3): 637–658

[12] V. M. Ahrens, K. Bellmann-Sickert, A. G. Beck-Sickinger. Peptides and peptide conjugates: Therapeutics on the upward path. Future Med. Chem., 2012, 4(12): 1567–1586 link1

[13] A. Pini, Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob. Agents Chemother., 2005, 49(7): 2665–2672 link1

[14] E. N. Lorenzón, Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob. Agents Chemother., 2012, 56(6): 3004–3010 link1

[15] J. Wang, S. Li, T. Luo, C. Wang, J. Zhao. Disulfide linkage: A potent strategy in tumor-targeting drug discovery. Curr. Med. Chem., 2012, 19(18): 2976–2983 link1

[16] N. J. Baumhover, K. Anderson, C. A. Fernandez, K. G. Rice. Synthesis and in vitro testing of new potent polyacridine-melittin gene delivery peptides. Bioconjug. Chem., 2010, 21(1): 74–83 link1

[17] J. Song, Design of an acid-activated antimicrobial peptide for tumor therapy. Mol. Pharm., 2013, 10(8): 2934–2941 link1

[18] M. Zasloff. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870): 389–395 link1

[19] M. R. Yeaman, N. Y. Yount. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1): 27–55 link1

[20] A. Schmidtchen, M. Pasupuleti, M. Malmsten. Effect of hydrophobic modifications in antimicrobial peptides. Adv. Colloid. Interfac., 2014, 205: 265–274 link1

[21] Z. Jiang, A. I. Vasil, J. D. Hale, R. E. W. Hancock, M. L. Vasil, R. S. Hodges. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers, 2008, 90(3): 369–383 link1

[22] L. M. Yin, M. A. Edwards, J. Li, C. M. Yip, C. M. Deber. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem., 2012, 287(10): 7738–7745

[23] N. Sitaram, R. Nagaraj. Interaction of antimicrobial peptides with biological and model membranes: Structural and charge requirements for activity. Biochim. Biophys. Acta, 1999, 1462(1−2): 29–54 link1

[24] Y. Chen, M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant, R. S. Hodges. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4): 1398–1406 link1

[25] T. Tachi, R. F. Epand, R. M. Epand, K. Matsuzaki. Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry, 2002, 41(34): 10723–10731 link1

[26] J. Song, Cell penetrating peptide TAT can kill cancer cells via membrane disruption after attachment of camptothecin. Peptides, 2015, 63: 143–149 link1

[27] L. H. Kondejewski, Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J. Biol. Chem., 1999, 274(19): 13181–13192

[28] C. E. Dempsey, S. Ueno, M. B. Avison. Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry, 2003, 42(2): 402–409 link1

[29] K. A. Brogden. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3): 238–250 link1

[30] P. Nicolas. Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. FEBS J., 2009, 276(22): 6483–6496 link1

[31] J. Yan, Two hits are better than one: Membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob. Agents Chemother., 2013, 57(1): 220–228 link1

[32] S. T. Henriques, M. N. Melo, M. A. R. B. Castanho. Cell-penetrating peptides and antimicrobial peptides: How different are they? Biochem. J., 2006, 399(1): 1–7

Related Research