Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 4 doi: 10.15302/J-ENG-2015118

Nitroxyl, a New Generation of Positive Inotropic Agent for Heart Failure

1 Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
2 Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
3 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Available online: 2015-12-30

Next Previous

References

[ 1 ] D. A. Kass, R. J. Solaro. Mechanisms and use of calcium-sensitizing agents in the failing heart. Circulation, 2006, 113(2): 305–315 link1

[ 2 ] M. Wang, R. Mazhari, I. Ilsar, A. Wang, M. S. Sabbah, H. N. Sabbah. Intravenous infusion of CXL-1020, a novel nitroxyl (HNO) donor, improves left ventricular systolic and diastolic function in dogs with advanced heart failure. J. Card. Fail., 2009, 15(6 Suppl): S73–S74

[ 3 ] S. Daya, R. Mazhari, R. S. Tunin, D. A. Kass. Intravenous infusion of novel HNO donor, CXL-1020, improves left ventricular contractile function in normal and failing dogs. J. Card. Fail., 2009, 15(6 Suppl): S75

[ 4 ] J. M. Fukuto, M. I. Jackson, N. Kaludercic, N. Paolocci. Examining nitroxyl in biological systems. Meth. Enzymol., 2008, 440: 411–431 link1

[ 5 ] C. G. Tocchetti, Playing with cardiac “redox switches”: The “HNO way” to modulate cardiac function. Antioxid. Redox Signal., 2011, 14(9): 1687–1698 link1

[ 6 ] J. M. Fukuto, K. Chiang, R. Hszieh, P. Wong, G. Chaudhuri. The pharmacological activity of nitroxyl: A potent vasodilator with activity similar to nitric oxide and/or endothelium-derived relaxing factor. J. Pharmacol. Exp. Ther., 1992, 263(2): 546–551

[ 7 ] N. Paolocci, Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc. Natl. Acad. Sci. USA, 2001, 98(18): 10463–10468 link1

[ 8 ] N. Paolocci, Positive inotropic and lusitropic effects of HNO/NO- in failing hearts: Independence from β-adrenergic signaling. Proc. Natl. Acad. Sci. USA, 2003, 100(9): 5537–5542 link1

[ 9 ] A. Fabiato. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol., 1983, 245(1): C1–C14

[10] G. A. Krudy, Q. Kleerekoper, X. Guo, J. W. Howarth, R. J. Solaro, P. R. Rosevear. NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex. J. Biol. Chem., 1994, 269(38): 23731–23735

[11] Q. Kleerekoper, J. W. Howarth, X. Guo, R. J. Solaro, P. R. Rosevear. Cardiac troponin I induced conformational changes in cardiac troponin C as monitored by NMR using site-directed spin and isotope labeling. Biochemistry, 1995, 34(41): 13343–13352 link1

[12] W. J. Dong, J. M. Robinson, S. Stagg, J. Xing, H. C. Cheung. Ca2+-induced conformational transition in the inhibitory and regulatory regions of cardiac troponin I. J. Biol. Chem., 2003, 278(10): 8686–8692

[13] C. G. Tocchetti, Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling. Circ. Res., 2007, 100(1): 96–104 link1

[14] M. J. Kohr, Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling. Front. Biosci. (Elite Ed.), 2010, E2(2): 614–626 link1

[15] J. P. Froehlich, Phospholamban thiols play a central role in activation of the cardiac muscle sarcoplasmic reticulum calcium pump by nitroxyl. Biochemistry, 2008, 47(50): 13150–13152 link1

[16] T. Dai, Nitroxyl increases force development in rat cardiac muscle. J. Physiol. (Lond.), 2007, 580(3): 951–960 link1

[17] W. D. Gao, Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ. Res., 2012, 111(8): 1002–1011 link1

[18] N. G. MacFarlane, D. J. Miller. Depression of peak force without altering calcium sensitivity by the superoxide anion in chemically skinned cardiac muscle of rat. Circ. Res., 1992, 70(6): 1217–1224 link1

[19] W. D. Gao, Y. Liu, E. Marban. Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation, 1996, 94(10): 2597–2604 link1

[20] M. Canton, Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur. Heart J., 2006, 27(7): 875–881

[21] N. Paolocci, The pharmacology of nitroxyl (HNO) and its therapeutic potential: Not just the Janus face of NO. Pharmacol. Ther., 2007, 113(2): 442–458 link1

[22] F. J. Giordano. Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Invest., 2005, 115(3): 500–508 link1

[23] M. Seddon, Y. H. Looi, A. M. Shah. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart, 2007, 93(8): 903–907 link1

[24] G. W. Dorn II. Adrenergic signaling polymorphisms and their impact on cardiovascular disease. Physiol. Rev., 2010, 90(3): 1013–1062 link1

[25] J. G. Duncan, R. Ravi, L. B. Stull, A. M. Murphy. Chronic xanthine oxidase inhibition prevents myofibrillar protein oxidation and preserves cardiac function in a transgenic mouse model of cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(4): H1512–H1518

[26] J. van der Velden. Functional significance of myofilament protein oxidation. Eur. Heart J., 2006, 27(7): 764–765

[27] Z. Hertelendi, Oxidation of myofilament protein sulfhydryl groups reduces the contractile force and its Ca2+ sensitivity in human cardiomyocytes. Antioxid. Redox Signal., 2008, 10(7): 1175–1184 link1

[28] E. R. Stadtman, R. L. Levine. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 2003, 25(3−4): 207–218 link1

[29] H. N. Sabbah, Nitroxyl (HNO): A novel approach for the acute treatment of heart failure. Circ. Heart Fail., 2013, 6(6): 1250–1258 link1

[30] F. I. Malik, Cardiac myosin activation: A potential therapeutic approach for systolic heart failure. Science, 2011, 331(6023): 1439–1443 link1

Related Research