Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Agricultural Science and Engineering >> 2018, Volume 5, Issue 2 doi: 10.15302/J-FASE-2017166

Fusaricidins in

. Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.. Editorial Department of Chinese Science Abstracts, Science and Technology Review Publishing House, Beijing 100081, China

Accepted: 2017-10-31 Available online: 2018-05-28

Next Previous

Abstract

Four kinds of antifungal compounds from an extract of A21 with molecular masses of 883.56, 897.59, 947.55, and 961.58 Da were characterized as the members of fusaricidin-type of antibiotics according to LC-MS analysis. Fusaricidins isolated from culture filtrate displayed high antagonistic activity against several plant fungal pathogens, especially , the causal agent of gray mold. The fusaricidins biosynthetic gene cluster (BGC) from A21 was cloned by PCR and comparative cluster analysis revealed that gene , the 3′ boundary of the fusaricidin BGC in strain PKB1, was not present in fusaricidin BGC of A21, indicating that is not necessary for fusaricidin synthesis. Fusaricidin extract from A21 significantly reduced gray mold disease incidence and severity on tomato. The mRNA levels for three patho-genesis-related proteins (PRs) revealed that treatment of tomato leaves with fusaricidin extract induced the expression of PR genes to different levels, suggesting that one reason for the reduction of gray mold infection by fusaricidin is induction of PR proteins, which lead to increased resistance to pathogens. This is the first report of the application of fusaricidins to control tomato gray mold and the comparative cluster analysis provides important molecular basis for research on fusaricidin biosynthesis.

Related Research