Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2016, Volume 18, Issue 1 doi: 10.15302/J-SSCAE-2016.01.010

Carbon Sequestration of Grassland in China

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Funding project:中国工程院重大咨询项目“中国草地生态保障与食物安全战略研究”(2012-ZD-7) Received: 2016-12-21 Revised: 2016-12-25 Available online: 2016-02-02 16:43:14.000

Next Previous

Abstract

Based on the research of the grassland carbon sink in China and the remote sensing data from 1982 to 2011, the total carbon storage of the grassland ecosystem in China is about 31.2 PgC, 96 % of which are stored in the soil. The vegetation carbon density of grassland is highly spatially heterogeneous due to various types of grassland and vast distribution in China. The largest grassland vegetation carbon sink in China is located in Inner Mongolia, followed by Tibet and Qinghai, while that of the six main pastoral areas accounts for 71 % of the national grassland vegetation carbon sink. However, 90 % of the natural grassland in China has degraded more or less. Effective managements and implementation of major ecological construction projects have played an important role in the recovery of grassland carbon storage, which indicates that the grassland in China has great potential for carbon sequestration.

Figures

图 1 

References

[ 1 ] Schindler D W. Carbon cycling: The mysterious missing sink [J]. Nature, 1999, 398 (6723): 105–107. link1

[ 2 ] The Intergovernmental Panel on Climate Change (IPCC). Climate change 2001: the third assessment report of the IPCC [R]. New York: New York Cambridge University Press, 2002.

[ 3 ] 方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库 [M]. 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社, 1996.

[ 4 ] Watson R T. Land use, Land-use Change, and Forestry: A Special Report of the IPCC [M]. Cambridge: Cambridge University Press, 2000. link1

[ 5 ] 钟华平, 樊江文, 于贵瑞, 等. 草地生态系统碳循环研究进展 [J]. 草地学报, 2005, 13 (S1): 67–73. link1

[ 6 ] Scurlock J M O, Hall D O. The global carbon sink: A grassland perspective [J]. Global Change Biology, 1998, 4 (2): 229–233. link1

[ 7 ] Scurlock J M O, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements [J]. Global Change Biology, 2002, 8 (8): 736–753. link1

[ 8 ] Yang Y H, Fang J Y, Ma W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s [J]. Global Change Biology, 2010, 16 (11): 3036–3047. link1

[ 9 ] Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands [J]. Global Change Biology, 2008, 14 (7): 1592–1599. link1

[10] Fang J Y, Yang Y H, Ma W H, et al. Ecosystem carbon stocks and their changes in China’s grasslands [J]. Science China-Life Sciences, 2010, 53 (7): 757–765. link1

[11] Fan J W, Zhong H P, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass [J]. Climatic Change, 2008, 86 (3–4): 375–396. link1

[12] Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981—2000 [J]. Science in China Series D-Earth Sciences, 2007, 50 (9): 1341–1350. link1

[13] Ni J. Carbon storage in grasslands of China [J]. Journal of Arid Environments, 2002, 50 (2): 205–218. link1

[14] Piao S L, Fang J Y, Zhou L M, et al. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999 [J]. Global Biogeochemical Cycles, 2007, 21(2): 1–10. link1

[15] 马文红, 方精云, 杨元合, 等. 中国北方草地生物量动态及其与气候因子的关系 [J]. 中国科学: 生命科学, 2010, 40 (7): 632–641. link1

[16] 朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局 [J]. 植物生态学报, 2004, 28 (4): 491–498. link1

[17] 沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析 [J]. 科学通报, 2015, doi: 10.1360/N972015-00732. Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China [J].

[18] Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China [J]. Science in China (Series D), 2004, 47(1): 49–57. link1

[19] 方精云, 杨元合, 马文红, 等. 中国草地生态系统碳库及其变化 [J]. 中国科学: 生命科学, 2010, 40 (7): 566–576. link1

[20] 钟华平, 樊江文, 于贵瑞, 等. 草地生态系统碳蓄积的研究进展 [J]. 草业科学, 2005, 22 (1): 4–11. link1

[21] Kimble L R J, Stewart B. World Soils as a Source or Sink for Radiatively-active Gases. Soils and Global Change [M]. In Lal R, Kimble J and Levin E, eds. Florida: CRC Press, 1995: 1–8. link1

[22] Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils [J]. Nature, 1990, 348(6298): 232–234. link1

[23] Schlesinger W H. An Overview of the C Cycle. Soils and Global Change [M]. In Lai R, Kimble J and Levin E, eds. Florida: CRC Press, 1995.

[24] Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change [J]. Science, 1996, 272(5260): 393–396. link1

[25] 林慧龙, 王军, 徐震, 等. 草地农业生态系统中的碳循环研究动态 [J]. 草业科学, 2005, 22 (4): 59–62. link1

[26] Bouwman A F, Germon J C. Special issue-soils and climate change-introduction [J]. Biology and Fertility of Soils, 1998, 27(3): 219–219.

[27] Raich J W, Schlesinger W H. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus Series B-Chemical and Physical Meteorology, 1992, 44 (2): 81–99. link1

[28] Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s [J]. Global Change Biology, 2007, 13(9): 1989–2007. link1

[29] 何念鹏, 韩兴国, 于贵瑞. 长期封育对不同类型草地碳贮量及其固持速率的影响 [J]. 生态学报, 2011, 31 (15): 4270–4276. link1

[30] 刘佳, 刘靖敏, 周建华. 碳汇与我国草地治理 [J]. 安徽农业科学, 079中国工程科学 2016 年 第 18 卷 第 1 期2011, 39 (10): 6050–6052. link1

[31] 王文颖, 王启基, 王刚. 高寒草甸土地退化及恢复重建对土壤碳氮含量的影响 [J]. 生态环境, 2006, 15 (2): 362–366. link1

[32] 邱丹. 青南地区“黑土滩”退化草地植被演替规律的研究 [J]. 中国农学通报, 2005, 21 (9): 284–285,293. link1

[33] 王长庭, 龙瑞军, 王启兰, 等. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化 [J]. 应用与环境生物学报, 2008, 14 (2): 225–230. link1

[34] 周万海, 冯瑞章, 满元荣. 黄河源区不同退化程度高寒草地土壤特征研究 [J]. 草原与草坪, 2008, 129 (4): 24–28. link1

[35] 赵哈林, 李玉强, 周瑞莲. 沙漠化对科尔沁沙质草地生态系统碳氮储量的影响 [J]. 应用生态学报, 2007, 18 (11): 2412–2417. link1

[36] Li Y Q, Zhao H L, Zhao X Y, et al. Biomass energy, carbon and nitrogen stores in different habitats along a desertification gradient in the semiarid Horqin sandy land [J]. Arid Land Research and Management, 2006, 20 (1): 43–60. link1

[37] Duan Z H, Xiao H L, Dong Z B, et al. Estimate of total CO2 output from desertified sandy land in China [J]. Atmospheric Environment, 2001, 35 (34): 5915–5921. link1

[38] 韩维峥, 汤洁, 李昭阳, 等. 吉林西部草地生态系统不同退化演替阶段表层土壤有机碳变化 [J]. 科技导报 , 2011, 29 (13): 40–43. link1

[39] Pan C C, Zhao H L, Zhao X Y, et al. Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization [J]. PloS ONE, 2013, 8 (1): e54827. link1

[40] Steffens M, Kölbl A, Giese M, et al. Spatial variability of topsoils and vegetation in a grazed steppe ecosystem in Inner Mongolia (PR China) [J]. Journal of Plant Nutrition and Soil Science, 2009, 172(1): 78–90. link1

[41] He N P, Zhang Y H, Yu Q, et al. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe [J]. Ecosphere, 2011, 2 (1): art8. link1

[42] 康慕谊, 刘肖骢, 董世魁, 等. 内蒙古扎鲁特旗土地利用方式及强度对草原群落的影响 [J]. 地球科学进展, 2002, 17 (2): 229–234. link1

[43] 都耀庭, 张东杰. 禁牧封育措施改良高寒地区退化草地的效果 [J]. 草业科学, 2007, 24 (7): 22–24. link1

[44] 韩俊 . 中国草原生态问题调查 [M]. 上海 : 上海远东出版社 , 2011.

[45] 石锋, 李玉娥, 高清竹, 等. 管理措施对我国草地土壤有机碳的影响 [J]. 草业科学, 2009, 26 (3): 9–15. link1

[46] 高亚琴. 黄土高原农田退耕还草对土壤碳、氮库及CO2、N2O排放通量的影响 [D]. 兰州:甘肃农业大学硕士学位论文 , 2009. link1

Related Research