Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2018, Volume 20, Issue 6 doi: 10.15302/J-SSCAE-2018.06.014

The Front, Theory and Practice of Quantum Communication

1. Physics Department of Tsinghua University, Beijing 100084, China;

2. Jinan Institute of Quantum Technology, Jinan 370102, China)

Funding project:中国工程院咨询项目“工程科技颠覆性技术战略研究”(2017-ZD-10) Received: 2018-10-25 Revised: 2018-11-26 Available online: 2018-12-31

Next Previous

Abstract

Quantum communication is an important branch of quantum information, where the two most important applications are quantum key distribution (QKD) and quantum teleportation. QKD can provide unconditionally secure key distribution methods between two remotely separated parties, and its information theoretical security is guaranteed by the laws of quantum mechanics. QKD has received much attention due to its unconditional security. Through extensive research on QKD, this paper systematically introduces the main content of QKD, the status of theoretical security proof and real-life security proof, and mainly focuses on the decoy state method and measurement-device-independent QKD. Besides, this paper systematically investigates the problems faced by QKD in the case of severe channel attenuation, and introduces the mainstream solution to the problem, i.e., quantum repeaters or satellite relay. This paper points out that the QKD has been developed from the theoretical model to the actual system, and provides a useful guidance for the subsequent research on QKD.

References

[ 1 ] Su X Q, Guo G C. Two typical quantum communication technologies [J]. Journal of Guangxi University (Natural Science Edition), 2005, 30(1): 30–39. Chinese. link1

[ 2 ] Yao A C C. Quantum circuit complexity[C]. Palo Alto: IEEE 34th Annual Foundations of Computer Science, 1993. link1

[ 3 ] Yuan Z S, Bao X H, Lu C Y, et al. Entangled photons and quantum communication [J]. Physics Reports, 2010, 497(1): 1–40. link1

[ 4 ] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. Entanglement-based quantum communication over 144 km [J]. Nature Physics, 2007, 3(7): 481–486. link1

[ 5 ] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]. Bangalore: IEEE International Conference on Computers, Systems and Signal Processing, 1984. link1

[ 6 ] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science, 1999, 283(5410): 2050–2056. link1

[ 7 ] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Physical Review Letters, 2000, 85(2): 441–444. link1

[ 8 ] Mayers D. Unconditional security in quantum cryptography [J]. Journal of the ACM (JACM), 2001, 48(3): 351–406. link1

[ 9 ] Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, 85(6): 1330–1333. link1

[10] Lydersen L, Wiechers C, Wittmann C, et al. Hacking commercial quantum cryptography systems by tailored bright illumination [J]. Nature Photonics, 2010, 4(10): 686–689. link1

[11] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, 2003, 91(5): 057901. link1

[12] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, 94(23): 230503. link1

[13] Lo H K, Ma X, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94(23): 230504. link1

[14] Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding [J]. Physical Review Letters, 2007, 98(1): 010505. link1

[15] Rosenberg D, Harrington J W, Rice P R, et al. Long-distance decoy-state quantum key distribution in optical fiber [J]. Physical Review Letters, 2007, 98(1): 010503. link1

[16] Schmitt-Manderbach T, Weier H, Fürst M, et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km [J]. Physical Review Letters, 2007, 98(1): 010504. link1

[17] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2012, 108(13): 130503. link1

[18] Liu Y, Chen T Y, Wang L J, et al. Experimental measurement device-independent quantum key distribution [J]. Physical Review Letters, 2013, 111(13): 130502. link1

[19] Tang Y L, Yin H L, Chen S J, et al. Measurement-device-independent quantum key distribution over 200 km [J]. Physical Review Letters, 2014, 113(19): 190501.

[20] Zhou Y H, Yu Z W, Wang X B. Making the decoy-state measurement-device-independent quantum key distribution practically useful [J]. Physical Review A, 2016, 93(4): 042324. link1

[21] Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber [J]. Physical Review Letters, 2016, 117(19): 190501. link1

[22] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Physical Review Letters, 1991, 67(6): 661–663. link1

[23] Gerhardt I, Liu Q, Lamaslinares A, et al. Experimentally faking the violation of Bell’s inequalities [J]. Physical Review Letters, 2011, 107(17): 170404. link1

[24] Mayers D, Yao A. Quantum cryptography with imperfect apparatus [C]. Palo Alto: IEEE Symposium on Foundations of Computer Science, 1998. link1

[25] Vazirani U, Vidick T. Fully device-independent quantum key distribution [J]. Physical Review Letters, 2014, 113(14): 140501. link1

[26] Yang S J, Wang X J, Bao X H, et al. An efficient quantum light–matter interface with sub-second lifetime [J]. Nature Photonics, 2016, 10(6): 381–384. link1

[27] Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication [J]. Nature Photonics, 2017, 11(8): 509–513. link1

[28] Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography [J]. Optics Express, 2009, 17(8): 6540–6549. link1

[29] Chen T Y, Wang J, Liang H, et al. Metropolitan all-pass and intercity quantum communication network [J]. Optics Express, 2010, 18(26): 27217–27225. link1

[30] Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution [J]. Nature, 2017, 549(7670): 43–47. link1

[31] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers [J]. Science, 2017, 356(6343): 1140–1144. link1

[32] Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation [J]. Nature, 2017, 549(7670): 70–73. link1

Related Research