Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2021, Volume 23, Issue 4 doi: 10.15302/J-SSCAE-2021.04.021

Grid Connection and Transmission Scheme of Large-Scale Offshore Wind Power

1. State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems (China Electric Power Research Institute), Beijing 100192, China;

2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Funding project:中国工程院咨询项目“海上风电支撑我国能源转型发展战略研究” (2019-ZD-15) Received: 2021-04-15 Revised: 2021-07-02 Available online: 2021-08-11

Next Previous

Abstract

Offshore wind power is an important direction of global wind power development. Economical and efficient grid connection of large-scale offshore wind power is a core challenge faced by offshore wind power construction in China. This article first summarizes the development status of offshore wind power in China and abroad and the global development trends. Subsequently, it elaborates the technical characteristics and representative applications of two typical scenarios: grid connection of single offshore wind farms and transmission of large-scale offshore wind power clusters. After analyzing the challenges faced by the grid connection and transmission of offshore wind power in China, we propose an overall development strategy and conduct adaptability analysis on the grid connection and transmission schemes under the aforementioned scenarios. To build first-class offshore wind power grid connection and transmission projects that adapt to China’s national conditions and to promote energy transformation, we propose that China should conduct unified planning after verifying its national resource reserves of offshore wind power; strengthen independent innovation to break through the key technologies; improve the supporting mechanism to ensure high quality development of offshore wind power; and promote international industrial cooperation.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Lee J, Zhao F, Pek A, et al. Global wind report 2021 [R]. Brussels: Global Wind Energy Council, 2021.

[ 2 ] Ramírez L, Fraile D, Brindley G, et al. Offshore wind in Europe– Key trends and statistics 2010 [R]. Brussels: WindEurope asbl, 2021.

[ 3 ] International Energy Agency. Global offshore wind report 2019 [R]. Paris: International Energy Agency, 2019.

[ 4 ] Deutsche WindGuard GmbH. Status of offshore wind energy development in Germany–First half of 2019 [R]. Varel: Deutsche WindGuard GmbH, 2020.

[ 5 ] 李翔宇, Abeynayake G, 姚良忠, 等. 欧洲海上风电发展现状及 前景 [J]. 全球能源互联网, 2019, 2(2): 116–126. Li X Y, Abeynayake G, Yao L Z, et al. Recent development and prospect of offshore wind power in Europe [J]. Journal of Global Energy Interconnection, 2019, 2(2):116–126. link1

[ 6 ] 徐进, 金逸, 胡从川, 等. 海上风电集群电能组合输送方式研究 [J]. 电网与清洁能源, 2016, 32(11): 107–113. Xu J, Jin Y, Hu C C, et al. Research on combined power transmission scheme for offshore wind farm cluster [J]. Power System and Clean Energy, 2016, 32(11): 107–113. link1

[ 7 ] Liu H C, Sun J. Voltage Stability and Control of Offshore Wind Farms With AC Collection and HVDC Transmission [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(4): 1181–1189. link1

[ 8 ] 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网 的技术经济性分析 [J]. 电力系统自动化, 2019, 43(5): 167–174. Huang M H, Wang X L, Liu S Q, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm [J]. Automation of Electric Power Systems, 2019, 43(5): 167–174. link1

[ 9 ] 张昭丞, 郭佳田, 诸浩君, 等. 基于全生命周期成本的海上风 电并网方案优选分析 [J]. 电力系统保护与控制, 2017, 45(21): 51–57. Zhang Z C, Guo J T, Zhu H J, et al. Optimization scheme of offshore wind power grid connection based on LCC model [J]. Power System Protection and Control, 2017, 45(21): 51–57. link1

[10] 沙志成, 张丹, 赵龙. 大规模海上风电并网方式的研究 [J]. 电力 与能源, 2017, 38(2): 158–161. Sha Z C, Zhang D, Zhao L. Grid integration modes of large-scale offshore wind farm [J]. Power & Energy, 2017, 38(2): 158–161. link1

[11] 王秀丽, 张小亮, 宁联辉, 等. 分频输电在海上风电并网应用中 的前景和挑战 [J]. 电力工程技术, 2017, 36(1): 15–19. Wang X L, Zhang X L, Ning L H, et al. Application prospects and challenges of fractional frequency transmission system in offshore wind power integration [J]. Electric Power Engineering Technology, 2017, 36(1): 15–19. link1

[12] 徐进, 韦古强, 金逸, 等. 江苏如东海上风电场并网方式及经济 性分析 [J]. 高电压技术, 2017, 43(1): 74–81. Xu J, Wei G Q, Jin Y, et al. Economic analysis on integration topology of Rudong offshore wind farm in Jiangsu Province [J]. High Voltage Engineering, 2017, 43(1): 74-81. link1

[13] 蔡旭, 施刚, 迟永宁, 等. 海上全直流型风电场的研究现状与未 来发展 [J]. 中国电机工程学报, 2016, 36(8): 2036–2048. Cai X, Shi G, Chi Y N, et al. Present status and future development of offshore all-DC wind farm [J]. Proceedings of the CSEE, 2016, 36(8): 2036–2048. link1

[14] 袁兆祥, 仇卫东, 齐立忠. 大型海上风电场并网接入方案研究 [J]. 电力建设, 2015, 36(4): 123–128. Yuan Z X, Qiu W D, Qi L Z. Grid connected solution for large offshore wind farm [J]. Electric Power Construction, 2015, 36(4): 123–128. link1

[15] 高垚. 海上风电输电与并网关键技术研究 [J]. 河南科技, 2018 (19): 139–140. Gao Y. Research on key technologies of offshore wind power transmission and grid connection [J]. Henan Science and Technology, 2018 (19): 139–140. link1

[16] 李飞飞, 王亮, 齐立忠, 等. 海上风电典型送出方案技术经济比 较研究 [J]. 电网与清洁能源, 2014, 30(11): 140–144. Li F F, Wang L, Qi L Z, et al. Technical and economical comparisons of typical transmission schemes of the offshore wind farm [J]. Power System and Clean Energy, 2014, 30(11): 140–144. link1

[17] Flourentzou N, Vassilios Agelidis V G, Demetriades G D. VSCbased HVDC power transmission systems: An overview [J]. IEEE Transactions on Power Electronics, 2009, 24(3): 592–602. link1

[18] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展 的思考 [J]. 中国工程科学, 2021, 23(1): 149–159. Liu J Z, Ma L F, Wang Q H, et al. Offshore wind power supports China’s energy transition [J]. Strategic Study of CAE, 2021, 23(1): 149–159. link1

[19] 王秀丽, 赵勃扬, 黄明煌, 等. 大规模深远海风电送出方式比 较及集成设计关键技术研究 [J]. 全球能源互联网, 2019, 2(2): 138–145. Wang X L, Zhao B Y, Huang M H,et al. Research of integration methods comparison and key design technologies for large scale long distance offshore wind power [J]. Journal of Global Energy Interconnection, 2019, 2(2): 138–145. link1

[20] 文劲宇, 陈霞, 姚美齐, 等. 适用于海上风场并网的混合多端直 流输电技术研究 [J]. 电力系统保护与控制, 2013, 41(2): 55–61. Wen J Y, Chen X, Yao M Q, et al. Offshore wind power integration using hybrid multi-terminal HVDC technology [J]. Power System Protection and Control, 2013, 41(2): 55–61. link1

[21] 廖勇, 王国栋. 双馈风电场的柔性高压直流输电系统控制 [J]. 中 国电机工程学报, 2012, 32(28): 7–15. Liao Y, Wang G D. VSC-HVDC system control for gridconnection of DIFG wind farms [J]. Proceedings of the CSEE, 2012, 32(28): 7–15. link1

[22] Elliott D, Bell K R W, Finney S J, et al. A comparison of AC and HVDC options for the connection of offshore wind generation in Great Britain [J]. IEEE Transactions on Power Delivery, 2016, 31(2): 798–809. link1

[23] 陈霞. 基于多端直流输电的风电并网技术研究 [D]. 武汉: 华中 科技大学(博士学位论文), 2012. Chen X. Wind power integration using multi-terminal HVDC technology [D]. Wuhan: Huazhong University of Science & Technology(Doctoral dissertation), 2012. link1

[24] 张开华, 张智伟, 王婧倩, 等. 海上风电场输电系统选择 [J]. 太 阳能, 2019 (2): 56–61. Zhang K H, Zhang Z W, Wang J Q, et al. Study on selection of offshore wind farm transmission system [J]. Solar Energy, 2019 (2): 56–61. link1

[25] 冯明, 李兴源, 李宽. 混合直流输电系统综述 [J]. 现代电力, 2015, 32(2):1–8. Feng M, Li X Y, Li K. A review on hybrid HVDC system [J]. Modern Electric Power, 2015, 32(2): 1–8. link1

[26] 刘亚磊, 李兴源, 曾琦, 等. 多端多电平柔性直流系统在海上风 电场中的应用 [J]. 电力系统保护与控制, 2013, 41(21): 9–14. Liu Y L, Li X Y, Zeng Q, et al. VSC-MTDC system based on MMC for offshore wind farms [J]. Power System Protection and Control, 2013, 41(21): 9–14. link1

[27] 杨志超. 混合三端直流输电系统的控制策略研究 [D]. 南京: 东 南大学(硕士学位论文), 2018. Yang Z C. Research on control strategy of hybrid three-terminal HVDC system [D]. Nanjing: Southeast University(Master’s thesis), 2018. link1

[28] 王永平, 赵文强, 杨建明, 等. 混合直流输电技术及发展分析 [J]. 电力系统自动化, 2017, 41(7): 156–167. Wang Y P, Zhao W Q, Yang J M, et al. Hybrid high-voltage direct current transmission technology and its development analysis [J]. Automation of Electric Power Systems, 2017, 41(7): 156–167. link1

[29] 杜海超. 海上风电场输电方式的经济性分析 [J]. 黑龙江电力, 2014, 36(6): 515–517. Du H C. Economic analysis of transmission mode of offshore wind farm [J]. Heilongjiang Electric Power, 2014, 36(6): 515–517. link1

[30] 胡荣, 刘彬, 黄玲玲. 海上风电场输电方式经济性的比较 [J]. 上 海电力学院学报, 2011, 27(6): 549–553. Hu R, Liu B, Huang L L. Economic comparison of transmission system of offshore wind farm [J]. Journal of Shanghai University of Electric Power, 2011, 27(6): 549–553. link1

[31] 程斌杰, 徐政, 宣耀伟, 等. 海底交直流电缆输电系统经济性比 较 [J]. 电力建设, 2014, 35(12): 131–136. Cheng B J, Xu Z, Xuan Y W, et al. Economic comparison of AC/ DC power transmission system for submarine cables [J]. Electric Power Construction, 2014, 35(12): 131–136. link1

Related Research