Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 1 doi: 10.15302/J-SSCAE-2023.07.008

Research Progress of Design Theory and Simulation of Composite Components

1. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
3. College of Civil Engineering and Architecture, Hebei University, Baoding 071002, Hebei, China

Funding project:Chinese Academy of Engineering project “Research on the Development Strategy of Precision Manufacturing of Composite Components for 2035” (2022-XY-26) Received: 2022-03-14 Revised: 2022-10-09 Available online: 2023-01-04

Next Previous

Abstract

The design and simulation methods of composite components are vital to the performance and application research of composite materials. Research pertaining to composite component design and simulation systems begins late in China and confronts many risks,including inadequate theoretical levels,lack of independent standards,weak foundation of simulation software,and segregation between design and manufacture. Therefore,the large-scale application of composite components in major equipment can hardly be realized. Considering the problems and challenges,this study analyzes the macro demand for composite component design theory and simulation technique,summarizes the development status and main trends in China and abroad,and proposes the key directions in China:design theory of composite components under extreme and multi-field environment,dynamic analysis and design theory of composite components,data-driven simulation method of composite components,and simulation evaluation method of strength and life of composite components. We suggest that research should be conducted on multi-field and multi-scale design technology of composite components for equipment engineering applications,performance design technology of composite components under dynamic load,data-driven design and simulation technology of composite components,and strength and lifespan simulation software platform of composite components,thereby comprehensively improving the design and engineering application level of composite components in China.
 

Figures

图1

图2

图3

图4

图5

References

[ 1 ] 白刚 , 肖伟 , 高锋 , 等‍ .‍ 功能型复合材料在深空探测任务中的应用研究进展 [J]‍.‍ 宇航材料工艺 , 2021 , 51 5 : 41 ‒ 50 .
Bai G , Xiao W , Gao F , al e t ‍.‍ Research progress on application of functional composite materials in deep space exploration mission [J]‍.‍ Aerospace Materials Technology , 2021 , 51 5 : 41 ‒ 50 .

[ 2 ] Herwig T, Wagner W‍.‍ On a robust FE2 model for delamination analysis in composite structures [J]‍.‍ Composite Structures, 2018, 201: 597‒607.

[ 3 ] 崔灿 , 茅献彪‍ .‍ 三维五向编织复合材料的冲击压缩特性及破坏机制 [J]‍.‍ 航空材料学报 , 2022 , 42 1 : 81 ‒ 91 .
Cui C , Mao X B‍ .‍ Impact compression characteristics and failure mechanism of 3D five-directional braided composites [J]‍.‍ Journal of Aeronautical Materials , 2022 , 12 1 : 81 ‒ 91 .

[ 4 ] 邢丽英 , 李亚锋 , 陈祥宝‍ .‍ 先进复合材料在航空装备发展中的地位与作用 [J]‍.‍ 复合材料学报 , 2022 , 39 9 : 4179 ‒ 4186 .
Xing L Y , Li Y F , Chen X B‍ .‍ The status and role of the advanced composite materials in the development of aviation equipment [J]‍.‍ Acta Materiae Compositae Sinica , 2022 , 39 9 : 4179 ‒ 4186 .

[ 5 ] 阳杰 , 徐锐 , 黄群 , 等‍ .‍ 数据驱动计算力学研究进展 [J]‍.‍ 固体力学学报 , 2020 , 41 1 : 1 ‒ 14 .
Yang J , Xu R , Huang Q , al e t ‍.‍ Data-driven computational mechanics: A review [J]‍.‍ Chinese Journal of Solid Mechanics , 2020 , 41 1 : 1 ‒ 14 .

[ 6 ] 杜善义 , 关志东‍ .‍ 我国大型客机先进复合材料技术应对策略思考 [J]‍.‍ 复合材料学报 , 2008 , 25 1 : 1 ‒ 10 .
Du S Y , Guan Z D‍ .‍ Strategic considerations for development of advanced composite technology for large commercial aircraft in China [J]‍.‍ Acta Materiae Compositae Sinica , 2008 , 25 1 : 1 ‒ 10 .

[ 7 ] 张丽华 , 范玉青‍ .‍ 复合材料在飞机上的应用评述 [J]‍.‍ 航空制造技术 , 2006 3 : 64 ‒ 66 .
Zhang L H , Fan Y Q‍ .‍ Review of composite materials in aircraft applications [J]‍.‍ Aeronautical Manufacturing Technology , 2006 3 : 64 ‒ 66 .

[ 8 ] Zhao Y N, Ai S G, Fang D N‍.‍ Elasto-plastic phase field modelling of oxidation of zirconium alloys [J]‍.‍ International Journal of Solids and Structures, 2018, 134: 30‒42.

[ 9 ] Gigliotti M, Olivier L, Vu D Q, al et‍.‍ Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures [J]‍.‍ Journal of the Mechanics and Physics of Solids, 2011, 59(3): 696‒712.

[10] Konica S, Sain T‍.‍ A thermodynamically consistent chemo-mechanically coupled large deformation model for polymer oxidation [J]‍.‍ Journal of the Mechanics and Physics of Solids,‍ 2020, 137: 1‒14.

[11] Konica S, Sain T‍.‍ A homogenized large deformation constitutive model for high temperature oxidation in fiber-reinforced polymer composites [J]‍.‍ Mechanics of Materials, 2021, 160: 1‒15.

[12] Qin B, Zhong Z‍.‍ A theoretical model for thermo-chemo-mechanically coupled problems considering plastic flow at large deformation and its application to metal oxidation [J]‍.‍ International Journal of Solids and Structures, 2021, 212: 107‒123.

[13] Masson J, Gigliotti M, Grandidier J, al et‍.‍ Numerical method to assess the stress state and gradients induced by thermo-oxidation in adhesively bonded joints for aircraft engine applications [J]‍.‍ International Journal of Adhesion and Adhesives, 2022, 113: 1‒15.

[14] Zhang M, Sun B Z, Gu B H‍.‍ Meso-structure ageing mechanism of 3-D braided composite´s compressive behaviors under accelerated thermo-oxidative ageing environment [J]‍.‍ Mechanics of Materials, 2017, 115: 47‒63.

[15] Zhang M, Sun B Z, Gu B H‍.‍ Experimental and numerical analyses of matrix shrinkage and compressive behavior of 3-D braided composite under thermo-oxidative ageing conditions [J]‍.‍ Composite Structures, 2018, 204: 320‒332.

[16] Liu S K, Zhang J J, Shi B H, al et‍.‍ Damage and failure mechanism of 3D carbon fiber/epoxy braided composites after thermo-oxidative ageing under transverse impact compression [J]‍.‍ Composites Part B: Engineering, 2019, 161: 677‒690.

[17] Yang Q S, Ma L H, Shang J J‍.‍ The chemo-mechanical coupling behavior of hydrogels incorporating entanglements of polymer chains [J]‍.‍ International Journal of Solids and Structures, 2013, 50(14‒15): 2437‒2448.

[18] Ahmed S, Zheng X T, Yan L L, al et‍.‍ Influence of asymmetric hybridization on impact response of 3D orthogonal woven composites [J]‍.‍ Composites Science and Technology, 2020, 199: 1‒13.

[19] Chen Y L, Ma Y, Yin Q F, al et‍.‍ Advances in mechanics of hierarchical composite materials [J]‍.‍ Composites Science and Technology, 2021, 214: 1‒12.

[20] Wei Y L, Yang Q S, Ma L H, al et‍.‍ Design and analysis of 2D/3D negative hydration expansion Metamaterial driven by hydrogel [J]‍.‍ Materials & Design, 2020, 196: 1‒15.

[21] Yvonnet J, Gonzalez D, He Q C‍.‍ Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials [J]‍.‍ Computer Methods in Applied Mechanics and Engineering, 2009, 198(33‒36): 2723‒2737.

[22] Yang H, Guo X, Tang S, al et‍.‍ Derivation of heterogeneous material laws via data-driven principal component expansions [J]‍.‍ Computational Mechanics, 2019, 64(2): 365‒379.

[23] Kirchdoerfer T, Ortiz M‍.‍ Data-driven computational mechanics [J]‍.‍ Computer Methods in Applied Mechanics and Engineering, 2016, 304: 81‒101.

[24] Liu Z L, Bessa M A, Liu W K‍.‍ Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials [J]‍.‍ Computer Methods in Applied Mechanics and Engineering, 2016, 306: 319‒341.

[25] He C W, Ge J R, Gao J Y, al et‍.‍ From microscale to mesoscale: The non-linear behavior prediction of 3D braided composites based on the SCA2 concurrent multiscale simulation [J]‍.‍ Composites Science and Technology, 2021, 213: 1‒15.

[26] He C W, Ge J R, Lian Y P, al et‍.‍ A concurrent three-scale scheme FE-SCA2 for the nonlinear mechanical behavior of braided composites [J]‍.‍ Computer Methods in Applied Mechanics and Engineering, 2022, 393: 1‒15.

[27] 万晔 , 严川伟 , 屈庆 , 等‍ .‍ 钢筋混凝土失效检测及其耐久性研究进展 [J]‍.‍ 腐蚀科学与防护技术 , 2002 , 14 1 : 42 ‒ 44 .
Wan Y , Yan C W , Qu Q , al e t ‍.‍ Progress in studies on failure detection and curability of reinforced concrete [J]‍.‍ Corrosion Science amd Protection Technology , 2002 , 14 1 : 42 ‒ 44 .

[28] Wei J, Wu X H, Zhao X L‍.‍ A model for concrete durability degradation in freeze-thawing cycles [J]‍.‍ Acta Mechanica Solida Sinica, 2003, 16(4): 353‒358.

[29] 李中权 , 肖旅 , 李宝辉 , 等‍ .‍ 航天先进轻合金材料及成形技术研究综述 [J]‍.‍ 上海航天 , 2019 , 36 2 : 9 ‒ 21 .
Li Z Q , Xiao L , Li B H , al e t ‍.‍ Review of study on advanced light alloy materials and forming technique in spaceflight industry [J]‍.‍ Aerospace Shanghai , 2019 , 36 2 : 9 ‒ 21 .

[30] Zeng Q L, Sun L J, Ge J R, al et‍.‍ Damage characterization and numerical simulation of shear experiment of plain woven glass-fiber reinforced composites based on 3D geometric reconstruction [J]‍.‍ Composite Structures, 2020, 233: 1‒15.

[31] Brod M, Dean A, Rolfes R‍.‍ Numerical life prediction of unidirectional fiber composites under block loading conditions using a progressive fatigue damage model [J]‍.‍ International Journal of Fatigue, 2021, 147: 1‒15.

[32] Costa J, Turon A, Trias P M D, al et‍.‍ A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation‍.‍ Part II: Stiffness reduction in environment sensitive fibres under fatigue [J]‍.‍ Composites Science and Technology, 2005, 65(14): 2269‒2275.

[33] Shabani P, Taheri-Behrooz F, Maleki S, al et‍.‍ Life prediction of a notched composite ring using progressive fatigue damage models [J]‍.‍ Composites Part B: Engineering, 2019, 165: 754‒763.

[34] Laribi M A, Tamboura S, Fitoussi J, al et‍.‍ Fast fatigue life prediction of short fiber reinforced composites using a new hybrid damage approach: Application to SMC [J]‍.‍ Composites Part B: Engineering, 2018, 139: 155‒162.

[35] Hanhan I, D‍ Sangid M.‍ Damage propagation in short fiber thermoplastic composites analyzed through coupled 3D experiments and simulations [J]‍.‍ Composites Part B: Engineering, 2021, 218: 1‒15.

[36] Manujesh B J, R‍ Prajna M.‍ Damage detection and classification for sandwich composites using machine learning [J]‍.‍ Materials Today: Proceedings, 2022, 52(3): 702‒709.

[37] Yu M H, Kim H S‍.‍ Deep-learning based damage sensing of carbon fiber/polypropylene composite via addressable conduction network [J]‍.‍ Composite Structures, 2021, 267: 1‒15.

[38] Sarhadi A, Albuquerque R Q, Demleitner M, al et‍.‍ Machine learning based thermal imaging damage detection in glass-epoxy composite materials [J]‍.‍ Composite Structures, 2022, 295: 1‒15.

[39] 郭艳丽 , 李旭 , 叶金蕊 , 等‍ .‍ 高密度分布式光纤传感技术在FRP复合材料结构健康监测中的应用 [J]‍.‍ 复合材料学报 , 2013 , 30 S1 : 247 ‒ 250 .
Guo Y L , Li X , Ye J R , al e t ‍.‍ High-density distributed fiber optic sensing system based on rayleigh backscattering effect [J]‍.‍ Acta Materiae Compositae Sinica , 2013 , 30 S1 : 247 ‒ 250 .

[40] Naya F, González C, Lopes C S, al et‍.‍ Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects [J]‍.‍ Composites Part A: Applied Science and Manufacturing, 2017, 92: 146‒157.

[41] Shi B H, Zhang M, Liu S K, al et‍.‍ Multi-scale ageing mechanisms of 3D four directional and five directional braided composites´ impact fracture behaviors under thermo-oxidative environment [J]‍.‍ International Journal of Mechanical Sciences, 2019, 155: 50‒65.

[42] Budwal N, Kasper K, Goering J, al et‍.‍ Flexible low-cost tooling solutions for a one-shot resin infusion of a 3D woven and multi-textile preform [J]‍.‍ Procedia Manufacturing, 2020, 51: 856‒863.

Related Research