Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2017, Volume 18, Issue 10 doi: 10.1631/FITEE.1601104

Quantitative feedback controller design and test for an electro-hydraulic position control system in a large-scale reflecting telescope

. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China.. College of Engineering, Shantou University, Shantou 515063, China

Available online: 2018-01-18

Next Previous

Abstract

For the primary mirror of a large-scale telescope, an electro-hydraulic position control system (EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a micron-level position control capability with a high convergence rate, high tracking accuracy, and stability over a wide mirror cell rotation region. In addition, the EHPCS parameters vary across different working conditions, thus rendering the system nonlinear. In this paper, we propose a robust closed-loop design for the position control system in a primary hydraulic support system. The control system is synthesized based on quantitative feedback theory. The parameter bounds are defined by system modeling and identified using the frequency response method. The proposed controller design achieves robust stability and a reference tracking performance by loop shaping in the frequency domain. Experiment results are included from the test rig for the primary mirror support system, showing the effectiveness of the proposed control design.

Related Research