Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2017, Volume 18, Issue 5 doi: 10.1631/FITEE.1601247

An efficient lossy link localization approach for wireless sensor networks

. College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China.. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.. PLA of 94543, Jining 272000, China

Available online: 2017-06-22

Next Previous

Abstract

Network fault management is crucial for a wireless sensor network (WSN) to maintain a normal running state because faults (e.g., link failures) often occur. The existing lossy link localization (LLL) approach usually infers the most probable failed link set first, and then gives the fault hypothesis set. However, the inferred failed link set contains many possible failures that do not actually occur. That quantity of redundant information in the inferred set can pose a high computational burden on fault hy-pothesis inference, and consequently decreases the evaluation accuracy and increases the failure localization time. To address the issue, we propose the conditional information entropy based redundancy elimination (CIERE), a redundant lossy link elimination approach, which can eliminate most redundant information while reserving the important information. Specifically, we develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures and model the nonde-terministic fault propagation. Through several rounds of mathematical derivations, the LLL problem is transformed to a set-covering problem. A heuristic algorithm is proposed to deduce the failure hypothesis set. We compare the performance of the proposed approach with those of existing LLL methods in simulation and on a real WSN, and validate the efficiency and effec-tiveness of the proposed approach.

Related Research