Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2017, Volume 18, Issue 10 doi: 10.1631/FITEE.1601730

Function synthesis algorithm based on RTD-based three-variable universal logic gates

. Hangzhou Institute of Service Engineering, Hangzhou Normal University, Hangzhou 310036, China.. College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Available online: 2018-01-18

Next Previous

Abstract

Compared with complementary metal–oxide semiconductor (CMOS), the resonant tunneling device (RTD) has better performances; it is the most promising candidate for next-generation integrated circuit devices. The universal logic gate is an important unit circuit because of its powerful logic function, but there are few function synthesis algorithms that can implement an n-variable logical function by RTD-based universal logic gates. In this paper, we propose a new concept, i.e., the truth value matrix. With it a novel disjunctive decomposition algorithm can be used to decompose an arbitrary n-variable logical function into three-variable subset functions. On this basis, a novel function synthesis algorithm is proposed, which can implement arbitrary n-variable logical functions by RTD-based universal threshold logic gates (UTLGs), RTD-based three-variable XOR gates (XOR3s), and RTD-based three-variable universal logic gate (ULG3s). When this proposed function synthesis algorithm is used to implement an n-variable logical function, if the function is a directly disjunctive decomposition one, the circuit structure will be very simple, and if the function is a non-directly disjunctive decomposition one, the circuit structure will be simpler than when using only UTLGs or ULG3s. The proposed function synthesis algorithm is straightforward to program, and with this algorithm it is convenient to implement an arbitrary n-variable logical function by RTD-based universal logic gates.

Related Research