Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2018, Volume 19, Issue 4 doi: 10.1631/FITEE.1620342

Kernel sparse representation for MRI image analysis in automatic brain tumor segmentation

. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.. Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.

Available online: 2018-06-28

Next Previous

Abstract

The segmentation of brain tumor plays an important role in diagnosis, treatment planning, and surgical simulation. The precise segmentation of brain tumor can help clinicians obtain its location, size, and shape information. We propose a fully automatic brain tumor segmentation method based on kernel sparse coding. It is validated with 3D multiple-modality magnetic resonance imaging (MRI). In this method, MRI images are pre-processed first to reduce the noise, and then kernel dictionary learning is used to extract the nonlinear features to construct five adaptive dictionaries for healthy tissues, necrosis, edema, non-enhancing tumor, and enhancing tumor tissues. Sparse coding is performed on the feature vectors extracted from the original MRI images, which are a patch of × × around the voxel. A kernel-clustering algorithm based on dictionary learning is developed to code the voxels. In the end, morphological filtering is used to fill in the area among multiple connected components to improve the segmentation quality. To assess the segmentation performance, the segmentation results are uploaded to the online evaluation system where the evaluation metrics dice score, positive predictive value (PPV), sensitivity, and kappa are used. The results demonstrate that the proposed method has good performance on the complete tumor region (dice: 0.83; PPV: 0.84; sensitivity: 0.82), while slightly worse performance on the tumor core (dice: 0.69; PPV: 0.76; sensitivity: 0.80) and enhancing tumor (dice: 0.58; PPV: 0.60; sensitivity: 0.65). It is competitive to the other groups in the brain tumor segmentation challenge. Therefore, it is a potential method in differentiation of healthy and pathological tissues.

Related Research