• Home
  • Journals
  • Focus
  • Conferences
  • Researchers
  • Sign in

Outline

  • Abstract
  • Keywords

Figures(5)

标签(1)

Table 1

其他(2)

PDF
Document

Frontiers of Information Technology & Electronic Engineering

2018, Volume 19,  Issue 1, Pages 27-39
    • PDF
    • collect

    Visual interpretability for deep learning: a survey

    University of California, Los Angeles, California 90095, USA.

    Available online:2018-04-23
    Show More
    10.1631/FITEE.1700808
    Cite this article
    Quan-shi ZHANG, Song-chun ZHU.Visual interpretability for deep learning: a survey[J].Frontiers of Information Technology & Electronic Engineering,2018,19(1):27-39.

    Abstract

    This paper reviews recent studies in understanding neural-network representations and learning neural networks with interpretable/disentangled middle-layer representations. Although deep neural networks have exhibited superior performance in various tasks, interpretability is always Achilles’ heel of deep neural networks. At present, deep neural networks obtain high discrimination power at the cost of a low interpretability of their black-box representations. We believe that high model interpretability may help people break several bottlenecks of deep learning, e.g., learning from a few annotations, learning via human–computer communications at the semantic level, and semantically debugging network representations. We focus on convolutional neural networks (CNNs), and revisit the visualization of CNN representations, methods of diagnosing representations of pre-trained CNNs, approaches for disentangling pre-trained CNN representations, learning of CNNs with disentangled representations, and middle-to-end learning based on model interpretability. Finally, we discuss prospective trends in explainable artificial intelligence.

    Keywords

    Artificial intelligence ; Deep learning ; Interpretable model
    Previous article in issue
    article in issue Next
    登录后,您可以进行评论。请先登录

    评论

    评论

    • 所有评论
     咋就跳到顶部了
    2019-04-23 11:24:14
    回复 (0)
    inspur  手机账号
    2019-05-10 11:30:17
    回复 (0)

    Read

    602

    Download

    39

    Related Research

    Current Issue
      Current Issue
        Follow us
        Copyright © 2015 China Engineering Science Press.
        京ICP备11030251号
        Follow us
        Copyright © 2015 China Engineering Science Press.
        京ICP备11030251号