Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2021, Volume 22, Issue 4 doi: 10.1631/FITEE.2000505

Integrated communication and localization in millimeter-wave systems

Affiliation(s): National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China; ZTE Corporation, Shenzhen 518001, China; State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen 518001, China; less

Received: 2020-09-27 Accepted: 2021-04-15 Available online: 2021-04-15

Next Previous

Abstract

As the fifth-generation (5G) mobile communication system is being commercialized, extensive studies on the evolution of 5G and sixth-generation (6G) mobile communication systems have been conducted. Future mobile communication systems are evidently evolving toward a more intelligent and software-reconfigurable functionality paradigm that can provide ubiquitous communication, as well as sense, control, and optimize wireless environments. Thus, integrating communication and localization using the highly directional transmission characteristics of millimeter waves (mmWaves) is a promising route. This approach not only expands the localization capabilities of a communication system but also provides new concepts and opportunities to enhance communication. In this paper, we explain the in mmWave systems, in which these processes share the same set of hardware architecture and algorithms. We also provide an overview of the key enabling technologies and the basic knowledge on localization. Then, we provide two promising directions for studies on localization with an and model-based (or model-driven) . We also discuss a comprehensive guidance for location-assisted mmWave communications in terms of channel estimation, channel state information feedback, beam tracking, synchronization, interference control, resource allocation, and user selection. Finally, we outline the future trends on the mutual assistance and enhancement of communication and localization in integrated systems.

Related Research