《1 前言》

1 前言

《2 事故风险评价的多指标多层次结构》

2 事故风险评价的多指标多层次结构

《图1》

Fig.1 Multi-stage and criteria of risk assessment of potential pollution accidents

《3 事故风险的模糊排序方法》

3 事故风险的模糊排序方法

$Y\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}\left\{y{}_{1},y{}_{2},\phantom{\rule{0.25em}{0ex}}...,y{}_{n}\right\}。\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\text{ }\text{ }\text{ }\phantom{\rule{0.25em}{0ex}}\left(1\right)$

$u{}_{\text{A}}:Y\to \left[0,1\right],y{}_{j}|\to u{}_{\text{A}}\left(y{}_{j}\right)。\text{ }\text{ }\text{ }\left(2\right)$

${}_{k}\mathbit{X}=\left[\begin{array}{cccc}{}_{k}x{}_{11}& {}_{k}x{}_{12}& \cdots & {}_{k}x{}_{1n}\\ {}_{k}x{}_{21}& {}_{k}x{}_{22}& \cdots & {}_{k}x{}_{2n}\\ ⋮& ⋮& & ⋮\\ {}_{k}x{}_{m1}& {}_{k}x{}_{m2}& \cdots & {}_{k}x{}_{mn}\end{array}\right]=\left({}_{k}x{}_{ij}\right)。\text{ }\text{ }\text{ }\left(3\right)$

${}_{k}r{}_{ij}={}_{k}x{}_{ij}/\left({}_{k}x{}_{i\text{m}\text{a}\text{x}}+{}_{k}x{}_{i\text{m}\text{i}\text{n}}\right)\text{ }\text{ }\text{ }\left(4\right)$

${}_{k}r{}_{ij}=1-{}_{k}x{}_{ij}/\left({}_{k}x{}_{i\text{m}\text{a}\text{x}}+{}_{k}x{}_{i\text{m}\text{i}\text{n}}\right)\phantom{\rule{0.25em}{0ex}}。\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\text{ }\text{ }\text{ }\left(5\right)$

${}_{k}\mathbit{R}=\left[\begin{array}{cccc}{}_{k}r{}_{11}& {}_{k}r{}_{12}& \cdots & {}_{k}r{}_{1n}\\ {}_{k}r{}_{21}& {}_{k}r{}_{22}& \cdots & {}_{k}r{}_{2n}\\ ⋮& ⋮& & ⋮\\ {}_{k}r{}_{m1}& {}_{k}r{}_{m2}& \cdots & {}_{k}r{}_{mn}\end{array}\right]=\left({}_{k}r{}_{ij}\right)。\text{ }\text{ }\text{ }\left(6\right)$

$\begin{array}{l}{}_{k}\mathbit{g}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}\left({}_{k}r{}_{11}\vee {}_{k}r{}_{12}\vee ...\vee {}_{k}r{}_{1n},\\ {}_{k}r{}_{21}\phantom{\rule{0.25em}{0ex}}\vee {}_{k}r{}_{22}\vee ...\vee {}_{k}r{}_{2n},...,\\ {}_{k}r{}_{m1}\vee {}_{k}r{}_{m2}\vee ...\vee {}_{k}r{}_{mn}\right)=\phantom{\rule{0.25em}{0ex}}\\ \left({}_{k}g{}_{1},{}_{k}g{}_{2},...,{}_{k}g{}_{m}\right)。\text{ }\text{ }\text{ }\left(7\right)\end{array}$

$\begin{array}{l}{}_{k}\mathbit{b}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}\left({}_{k}r{}_{11}\wedge {}_{k}r{}_{12}\wedge ...\wedge {}_{k}r{}_{1n},\\ {}_{k}r{}_{21}\phantom{\rule{0.25em}{0ex}}\wedge {}_{k}r{}_{22}\wedge ...\wedge {}_{k}r{}_{2n},...,\\ {}_{k}r{}_{m1}\wedge {}_{k}r{}_{m2}\wedge ...\wedge {}_{k}r{}_{mn}\right)=\phantom{\rule{0.25em}{0ex}}\\ \left({}_{k}b{}_{1},{}_{k}b{}_{2},...,{}_{k}b{}_{m}\right)。\text{ }\text{ }\text{ }\left(8\right)\end{array}$

${}_{k}\mathbit{w}=\left({}_{k}w{}_{1},\phantom{\rule{0.25em}{0ex}}{}_{k}w{}_{2},\cdots ,\phantom{\rule{0.25em}{0ex}}{}_{k}w{}_{m}\right),\text{ }\text{ }\text{ }\left(9\right)$

${}_{k}D{}_{g}=\phantom{\rule{0.25em}{0ex}}\parallel \phantom{\rule{0.25em}{0ex}}{}_{k}\mathbit{w}\left({}_{k}\mathbit{g}\phantom{\rule{0.25em}{0ex}}-\phantom{\rule{0.25em}{0ex}}{}_{k}\mathbit{r}{}_{j}\right)\parallel \phantom{\rule{0.25em}{0ex}}=\sum _{i=1}^{m}{}_{k}w{}_{i}\left({}_{k}g{}_{i}-{}_{k}r{}_{ij}\right)\text{ }\text{ }\text{ }\left(10\right)$

${}_{k}D{}_{b}=\phantom{\rule{0.25em}{0ex}}\parallel \phantom{\rule{0.25em}{0ex}}{}_{k}\mathbit{w}\left({}_{k}\mathbit{r}{}_{j}\phantom{\rule{0.25em}{0ex}}-\phantom{\rule{0.25em}{0ex}}{}_{k}b\right)\parallel \phantom{\rule{0.25em}{0ex}}=\sum _{i=1}^{m}{}_{k}w{}_{i}\left({}_{k}r{}_{ij}-{}_{k}b{}_{i}\right)\text{ }\text{ }\text{ }\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\left(11\right)$

${}_{k}u{}_{j}^{\text{c}}=\phantom{\rule{0.25em}{0ex}}1\phantom{\rule{0.25em}{0ex}}-{}_{k}u{}_{j}。\text{ }\text{ }\text{ }\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\left(12\right)$

$\begin{array}{l}\mathrm{min}\left\{F\left({}_{k}u{}_{j}\right)=\sum _{j=1}^{n}\left(\left[{}_{k}u{}_{j}\sum _{i=1}^{m}{}_{k}w{}_{i}\left({}_{k}g{}_{i}-{}_{k}r{}_{ij}\right)\right]{}^{2}+\\ \phantom{\rule{0.25em}{0ex}}\text{ }\text{ }\left[\left(1-{}_{k}u{}_{j}\right)\sum _{j=1}^{m}{}_{k}w{}_{i}\left({}_{k}r{}_{ij}-{}_{k}b{}_{i}\right)\right]{}^{2}\phantom{\rule{0.25em}{0ex}}\right)\right\}。\text{ }\text{ }\text{ }\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\left(13\right)\end{array}$

$\text{d}F\left({}_{k}u{}_{j}\right)/\text{d}\left({}_{k}u{}_{j}\right)=\phantom{\rule{0.25em}{0ex}}0‚\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\text{ }\text{ }\text{ }\phantom{\rule{0.25em}{0ex}}\left(14\right)$

${}_{k}u{}_{j}=\left(1+\frac{\left[\sum _{i=1}^{m}{}_{k}w{}_{i}\left({}_{k}g{}_{i}-{}_{k}r{}_{ij}\right)\right]{}^{2}}{\left[\sum _{i=1}^{m}{}_{k}w{}_{i}\left({}_{k}r{}_{ij}-{}_{k}b{}_{i}\right)\right]{}^{2}}\right){}^{-1}\phantom{\rule{0.25em}{0ex}}。\text{ }\text{ }\text{ }\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\left(15\right)$

$\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}{}_{k}\mathbit{u}\phantom{\rule{0.25em}{0ex}}=\left({}_{k}u{}_{1},\phantom{\rule{0.25em}{0ex}}{}_{k}u{}_{2},\phantom{\rule{0.25em}{0ex}}\cdots ,{}_{k}u{}_{n}\right)。\text{ }\text{ }\text{ }\phantom{\rule{0.25em}{0ex}}\left(16\right)$

$\mathbit{U}=\left[\begin{array}{cccc}{}_{1}u{}_{1}& {}_{1}u{}_{2}& \cdots & {}_{1}u{}_{n}\\ {}_{2}u{}_{1}& {}_{2}u{}_{2}& \cdots & {}_{2}u{}_{n}\\ ⋮& ⋮& & ⋮\\ {}_{l}u{}_{1}& {}_{l}u{}_{2}& \cdots & {}_{l}u{}_{n}\end{array}\right]=\left({}_{k}u{}_{j}\right)。\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\text{ }\text{ }\text{ }\left(17\right)$

$\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\mathbit{w}=\left(w{}_{1},w{}_{2},\phantom{\rule{0.25em}{0ex}}\cdots ,w{}_{l}\phantom{\rule{0.25em}{0ex}}\right)‚\text{ }\text{ }\text{ }\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\left(18\right)$

$\mathbit{u}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}\left(u{}_{1},u{}_{2},\phantom{\rule{0.25em}{0ex}}\cdots ,u{}_{n}\right)。\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}\text{ }\text{ }\text{ }\left(19\right)$

《4 应用实例》

4 应用实例

${}_{2}\mathbit{X}=\left[\begin{array}{cccc}370& 370& 5\phantom{\rule{0.25em}{0ex}}100& 42\phantom{\rule{0.25em}{0ex}}000\\ 8& 8& 13& 4\\ 16& 16& 15& 18\\ 62& 20& 43& 1\phantom{\rule{0.25em}{0ex}}760\\ 2.0& 9.4& 2.1& 20.3\\ 50& 30& 450& 380\end{array}\right]\phantom{\rule{0.25em}{0ex}}。$

${}_{2}\mathbit{R}=\left[\begin{array}{cccc}0.999& 0.999& 0.998& 0.001\\ 0.471& 0.471& 0.765& 0.235\\ 0.485& 0.485& 0.455& 0.545\\ 0.035& 0.011& 0.024& 0.989\\ 0.091& 0.422& 0.094& 0.910\\ 0.104& 0.062& 0.938& 0.792\end{array}\right]。$

2w = (0.20, 0.20, 0.20, 0.20, 0.10, 0.10) 。

Table 1 Attributes and weights of criteria for the risk assessment of potential accidents

《表1》

 第2层次 第1层次 子 指 标 特 征 值 指标 权重 子 指 标 权重*1 厂1 厂2 厂3 厂4 I级事故发生频率/a-1 0.17 1.5 0.48 0 0.4 危害度 0.3 Ⅱ级事故发生频率/a-1 0.33 0.1 0.68 0 0 Ⅲ级事故发生频率/a-1 0.50 0 0.20 0 0 毒物半致死浓度LC50 /g·m-3 0.20 370 370 5 100 42 000 毒物潜在危害指数 0.20 8 8 13 4 危险度 0.3 毒物易燃易爆系数 0.20 16 16 15 18 毒物日均产量或用量/t·d-1 0.20 62 20 43 1 760 厂内接触毒物人数比率/%*2 0.10 2.0 9.4 2.1 20.3 厂外人群暴露比率/10-4*3 0.10 50 30 450 380 装置安全性得分 0.55 44.5 46.5 52.0 54.0 安全度 0.4 安全管理制度得分 0.20 20.0 19.0 20.0 20.0 环境敏感性得分 0.25 21.0 21.0 24.0 25.0

*1 单位为1; *2 厂内接触毒物人群比率 = ( 接触毒物人数 / 全厂职工总人数) ×100 (%) ; *3 厂内暴露人群比率 = (距厂界1 km半径范围内人口数 / 全市人口数) ×104

${}_{2}\mathbit{u}\phantom{\rule{0.25em}{0ex}}=\left(0.273,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.335,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.641,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.570\right)。$

${}_{1}\mathbit{u}\phantom{\rule{0.25em}{0ex}}=\left(0.070,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.984,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.001,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.002\right)‚$

4家工厂对于安全度小的隶属度向量

${}_{3}\mathbit{u}\phantom{\rule{0.25em}{0ex}}=\left(0.995,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.974,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.064,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.001\right)‚$

$\mathbit{U}=\left[\begin{array}{cccc}0.070& 0.984& 0.001& 0.002\\ 0.273& 0.335& 0.641& 0.570\\ 0.995& 0.974& 0.064& 0.001\end{array}\right]。$

$\mathbit{w}\phantom{\rule{0.25em}{0ex}}=\left(0.3,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.3,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.4\right)。$

$\mathbit{u}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}\left(0.543,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.980,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.040,\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0.25em}{0ex}}0.016\right)‚$

《5 结语》

5 结语