Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2004, Volume 6, Issue 5

Computer Simulation of Metal Solidification Microstructures

1. Southeast University, Nanjing 210096, China

2. Yonsei University, Seoul 120749, Korea

Funding project:国家自然科学基金资助项目(50371015);教育部留学回国人员科研启动基金资助项目 Received: 2003-12-18 Revised: 2004-02-23 Available online: 2004-05-20

Next Previous

Abstract

Computer simulation has been one of the most important and advanced research fields in the materials science and engineering. It is playing an increasing important role in the studies of microstructural evolution during solidification of metals and alloys. In this paper, the recent progress in computer simulation of solidification microstructures is briefly reviewed. Various models including deterministic and stochastic approaches for the prediction of solidification microstructures are compared and assessed. Then, a modified cellular automaton ( MCA) model developed by the authors is introduced and its predictive capabilities are described by presenting some examples including the modeling of 2D & 3D dendritic growth, non-dendritic or globular microstructure evolution in semi-solid process, eutectic and peritectic microstructure formation, as well as the asymmetric dendritic growth features in the presence of melt convection.

Figures

图1

图2

图3

图4

图5

图6

图7

图8

References

[ 1 ] Boettinger W J, Coriell S R, Greer A L, et al. Solidification microstructures: recent developments, furture directions [J]. Acta Mater, 2000, 48 (1) : 43~70

[ 2 ] Thevoz P H, Desbiolles J L, Rappaz M. Modeling of eduiaxed microstructure formation in casting [J]. Metall Trans A, 1989, 20: 311~322 link1

[ 3 ] Wang C Y, Beckermann C. Equiaxed dendritic solidification with convection: part Ⅱ. numerical simulations for an Al-4 wt pct Cu alloy[J]. Metall Mater Trans A, 1996, 27 (9) : 2765~2783 link1

[ 4 ] SchneiderMC , BeckermannC , LipinskiDM , etal.Macrosegregationformationduringsolidificationofcomplexsteelcastings:3Dnumericalsimulationandexperimentalcomparison[A].Proceedingsofthe8thinternationalconferenceonmodelingofcastingandweldingprocesses[C].1998, 257~264

[ 5 ] SrolovitzDJ, GrestGS , AndersonMP .ComputersimulationofrecrystallizationI .Homogeneousnucleationandgrowth[J].ActaMetall, 1986, 34 (9) :1833~1845

[ 6 ] Spittle J A, Brown S G. Computer simulation of the effects of alloy variables on the grain structures of castings [J]. Acta Metall, 1989, 37: 1803~1810

[ 7 ] Zhu P, Smith R W. Dynamic simulaton of crystal growth by Monte Carlo Method—Ⅱ. Ingot microstructures [J]. Acta Metall Mater, 1992, 40: 3369~3379

[ 8 ] DasA , MittemeijerEJ.Solidification simulationofeutecticsolidificationstructuresofbinaryalloys:Amultiparticlediffusionlimitedaggregationmodel[J].MetallMaterTransA , 2000, 31 (8) :2049~2058

[ 9 ] Das A, Ji S, Fan Z. Morphology development of solidification structures under forced fluid flow: A Monte Carlo smulation [J]. Acta Materialia, 2002, 50: 4571~4585

[10] RappazM , GandinChA .Probabilisticmodellingofmicrostructureformationinsolidificationprocesses[J].ActaMetallMater, 1993, 41:345~360

[11] GandinChA , RappazM .Acoupledfiniteelement cellularAutomatonModelforthe predictionofdendriticgrainstructuresinsolidification processes[J].ActaMetallMater, 1994, 42:2233~2246

[12] GandinChA , RappazM .A 3DCellularAutomatonalgorithmforthepredictionofdendriticgraingrowth[J].ActaMater, 1997, 45:2187~2195

[13] RappazM , GandinChA , DesbiollesIL , etal.Predictionofgrainstructuresinvarioussolidificationprocesses[J].MetallMaterTransA , 1996, 27:695~705 link1

[14] GandinChA , DesbiollesJL , RappazM , etal.Athree dimensionalcellularautomaton finiteelementmodelforthepredictionofsolidification grainstructures[J].MetallMaterTransA , 1999, 30 (12) :3153~3165 link1

[15] KernanpurA , VarahramN , DavamiP , etal.Thermalandgrain structuresimulationinaland basedturbinebladedirectionallysolidifiedwiththeliquidmetalcoolingprocess[J].MetallMaterTransB , 2000, 31 (6) :1293~1304 link1

[16] GandinChA , JalantiT , RappazM .Modelingofdendriticgrainstructures[A].Proceedingsofthe8thinternationalconferenceonmodelingofcastingandweldingprocesses[C].1998, 363~374

[17] TakataniH , GandinChA , RappazM .EBSDcharacterisationandmodellingofcolumnardendriticgrainsgrowinginthepresenceoffluidflow[J].ActaMater, 2000, 48 (3) :675~688

[18] ChoIS , HongCP .ModelingofmicrostructuralevolutioninsqueezecastingofanAl-45mass%Cualloy[J].ISIJInt, 1997, 37 (11) :1098~1106

[19] LeeKY , HongCP .Stochasticmodelingofsolidification grainstructuresofAl-Cucrystallineribbonsinplanarflowcasting[J].ISIJInt, 1997, 37 (1) :38~46

[20] ChangYH , LeeSM , LeeKY , etal.Three dimensionalsimulationofdendriticgrainstructuresofgas atomizedAlCualloydroplets[J].ISIJInt, 1998, 38 (1) :63~70

[21] LeeSY , LeeSM , HongCP .Numericalmodelingofdeflectedcolumnardendritic grainssolidifiedinaflowingmeltanditsexperimentalverification[J].ISIJInt, 2000, 40 (1) :48~57

[22] DiltheyU , PavlikV .Numericalsimulationofdendriticmorphologyandgraingrowthwithmodifiedcellularautomata[A ].Proceedingsofthe8thinternationalconferenceonmodelingofcastingandweldingprocesses[C].1998, 589~596

[23] NastacL .Numericalmodelingofsolidificationmorphologiesandsegregationpatternsincastdendriticalloys[J].ActaMater, 1999, 47 (17) :4253~4262

[24] ZhuMF , HongCP .Amodifiedcellularautmatonmodelforthesimulationofdendritic growthinsolidificationofalloys[J].ISIJInt, 2001, 41 (5) :436~445

[25] ZhuMF , HongCP .Athreedimensionalmodifiedcellularautomatonmodelforthe predictionofsolidificationmicrostructures[J].ISIJInt, 2002, 42 (5) :520~526

[26] BeltranSanchezL , StefanescuDM .GrowthofsolutaldendritesAcellularautomatonmodelanditsquantitivecapabilities[J].MetallMaterTransA , 2003, 34:367~382 link1

[27] ZhuMF , KimJM , HongCP .ModelingofglobularanddendriticstructureevolutioninsolidificationofanAl-7mass%Sialloy[J].ISIJInt, 2001, 41:992~998

[28] ZhuMF , HongCP .Modelingofmicrostructureevolutioninregulareutecticgrowth[J].PhysicalReviewB , 2002, 66:155428

[29] ZhuMF , NishidoS , HongCP .ModelingofeutecticstructureformationbyamodifiedCellularautomatonmodel[J].IntJCastMetalsRes, 2002, 15 (3) :273~278

[30] ZhuMF , HongCP .ModelingofirregulareutecticmicrostructuresinsolidificationofAl-Sialloys[J].MetallMaterTrans.A , 2004, 35 (inpress)

[31] ZhuMF , HongCP .Modelingofmicrostructureevolutionineutecticandperitecticsolidification[A].Proceedingsfromthe10thintemationalconferenceonmcodelingofcastingweldingandadvancedsolidificationprocesses[C].2003.91~98

[32] KarmaA , RappelWJ.Quantitative phase fieldmodelingofdendriticgrowthintwoandthreedimensions[J].PhysicalReviewE , 1998, 57:4323~4349

[33] BoettingerWJ, WarrenJA , BeckermannC , etal.Phase fieldsimulationofsolidification[J].AnnuRevMatterRes, 2002, 32:163~194

[34] NestlerB , WheelerAA .Amulti phase fieldmodelofeutecticandperitecticalloys:Numericalsimulationofgrowthstructures[J].PhysicaD , 2000, 138:114~133

[35] LoTS , KarmaA , PlappM .Phase fieldmodelingofmicrostructural patternformationduringdirectionalsolidificationofperitecticalloyswithoutmorphological    instability[J].PhysicalReviewE , 2001, 63:031504

[36] BeckermannC , DiepersHJ , SteinbachI , etal.Modelingmeltconvectioninphase fieldsimulationsofsolidification[J].JCompPhys, 1999, 154:468~496

[37] TongX , BeckermannC , KarmaA , etal.Phase fieldsimulationsofdendriticcrystalgrowthinaforcedflow[J].PhysRevE , 2001, 63:061601

[38] TonhardtR , AmbergG .Dendritic growthofrandomlyorientednucleiinashearflow[J].JCrystGrowth, 2000, 213:161~187

[39] StefanescuD .Scienceandengineeringofcastingsolidification[M ].NewYork:KluwerAcademic/Plenum.2002

[40] ScPhThevoz.DrThesisNo.765, SwissFederalInstTech, Lausanne, 1988

[41] KurzW , GiovanolaB , TrivediR .Theoryofmicrostructuredevelopmentduringrapidsolidification[J].ActaMetall, 1986, 34:823~829

[42] LiptonJ , KurzW , TrivediR .Rapiddendritegrowthinundercooledalloys[J].ActaMetall, 1987, 35:957~964

[43] GrugelR , KurzW .GrowthofinterdendriticeutectionindirectionallysolidifiedAl-Sialloys[J].MetallTransA , 1987, 18:1137~1142

[44] ZhuMF , LeeSY , HongCP .Modifiedcelullarautomatonmodelforthepredictionofdendriticgrowthwithmeltconvection[J].PhysicalReviewE , 2004, 69: (inpress)

Related Research