Races belonging to the Ug99 (TTKSK) lineage of the wheat stem rust fungus, carrying complex virulence combinations, and their migration to countries in Africa, Middle East and Asia continue to pose a significant threat to global wheat production. The rapid spread of additional races, e.g., TKTTF or the Digalu lineage, in several countries causing localized epidemics reminds us of the vulnerability of wheat germplasm to stem rust disease, a formidable foe referenced as early as biblical times. A global rust monitoring system reflecting increased surveillance efforts has identified 13 races within the Ug99 lineage in 13 countries and unrelated lineages are emerging, spreading and posing serious threats to wheat production. Race TKTTF has caused localized epidemics in Ethiopia and its variants have been recently implicated in stem rust outbreaks in Europe. Concerted research efforts have resulted in the identification of several new resistance (APR) genes and gene combinations for use in breeding. Combining multiple adult plant resistance genes in high-yielding backgrounds and discovery of new quantitative trait loci conferring stem rust resistance has progressed in the recent years, enhancing the durability of resistance. Effective gene stewardship and new generation breeding materials and cultivars that combine multiple race-specific or minor to intermediate effect APR genes, complemented by active surveillance and monitoring, have helped to limit major epidemics and increase grain yield potential in key target environments.

The application of spectral reflectance indices (SRIs) as proxies to screen for yield potential (YP) and heat stress (HS) is emerging in crop breeding programs. Thus, a comparison of SRIs and their associations with grain yield (GY) under YP and HS conditions is important. In this study, we assessed the usefulness of 27 SRIs for indirect selection for agronomic traits by evaluating an elite spring wheat association mapping initiative (WAMI) population comprising 287 elite lines under YP and HS conditions. Genetic and phenotypic analysis identified 11 and 9 SRIs in different developmental stages as efficient indirect selection indices for yield in YP and HS conditions, respectively. We identified enhanced vegetation index (EVI) as the common SRI associated with GY under YP at booting, heading and late heading stages, whereas photochemical reflectance index (PRI) and normalized difference vegetation index (NDVI) were the common SRIs under booting and heading stages in HS. Genome-wide association study (GWAS) using 18704 single nucleotide polymorphisms (SNPs) from Illumina iSelect 90K identified 280 and 43 marker-trait associations for efficient SRIs at different developmental stages under YP and HS, respectively. Common genomic regions for multiple SRIs were identified in 14 regions in 9 chromosomes: 1B (60–62 cM), 3A (15, 85–90, 101–105 cM), 3B (132–134 cM), 4A (47–51 cM), 4B (71–75 cM), 5A (43–49, 56–60, 89–93 cM), 5B (124–125 cM), 6A (80–85 cM), and 6B (57–59, 71 cM). Among them, SNPs in chromosome 5A (89–93 cM) and 6A (80–85 cM) were co-located for yield and yield related traits. Overall, this study highlights the utility of SRIs as proxies for GY under YP and HS. High heritability estimates and identification of marker-trait associations indicate that SRIs are useful tools for understanding the genetic basis of agronomic and physiological traits.

The publications of the International Wheat Genome Sequencing Consortium (IWGSC) released in August 2018 are reviewed and placed into the context of developments arising from the availability of the high-quality wheat genome assembly.

Rudi APPELS ,   et al.
Wheat is one of the most important crops in both China and the world, and its domestication can be traced back to ~10000 years ago. However, the history of its origin and utilization in China remains highly ambiguous. Drawing upon the most recent results of taxonomic, genetic, archeological and textual studies focused on the wheat in prehistory, this paper argues that wheat was not domesticated but introduced into China in the late fifth millennium BP. In the subsequent centuries, this exotic crop was quickly utilized as a staple food in northwest China. In contrast, it was not adopted as a staple in Central Plains until the Han Dynasty (202 BCE–220 CE), which was mainly as a consequence of the living environment, population and innovations in food processing technology.

Minxia LU ,   Liang CHEN   et al.

Most Popular