More

Against the background of addressing global climate change and carbon emission reduction, corporate carbon information disclosure (CID) has become an important measure to achieve carbon emission reduction worldwide and a research hotspot closely investigated by the academia. This study provides a systematic overview of literature on CID, including its research trend, theoretical basis, disclosing features, influencing factors, and consequences. Results indicate that, first, CID has been increasing in recent years, but the content and quality of the disclosure still need to be improved. Second, the main influencing factors of CID include company features, corporate governance, environmental performance, institutional characteristics, and stakeholders. Third, the consequences of CID are based mainly on company performance, ecological environment, and investors’ decision-making. Lastly, most studies have confirmed the positive effect of CID on company performance and investors’ decision-making, but the nexus of environmental performance and corporate CID remains to be investigated. Several important future research directions are also proposed based on these results.

Strong aftershocks generally occur following a significant earthquake. Aftershocks further damage buildings weakened by mainshocks. Thus, the accurate and efficient prediction of aftershock-induced damage to buildings on a regional scale is crucial for decision making for post-earthquake rescue and emergency response. A framework to predict regional seismic damage of buildings under a mainshock–aftershock (MS–AS) sequence is proposed in this study based on city-scale nonlinear time-history analysis (THA). Specifically, an MS–AS sequence-generation method is proposed to generate a potential MS–AS sequence that can account for the amplification, spectrum, duration, magnitude, and site condition of a target area. Moreover, city-scale nonlinear THA is adopted to predict building seismic damage subjected to MS–AS sequences. The accuracy and reliability of city-scale nonlinear THA for an MS–AS sequence are validated by as-recorded seismic responses of buildings and simulation results in published literature. The town of Longtoushan, which was damaged during the Ludian earthquake, is used as a case study to illustrate the detailed procedure and advantages of the proposed framework. The primary conclusions are as follows. (1) Regional seismic damage of buildings under an MS–AS sequence can be predicted reasonably and accurately by city-scale nonlinear THA. (2) An MS–AS sequence can be generated reasonably by the proposed MS–AS sequence-generation method. (3) Regional seismic damage of buildings under different MS–AS scenarios can be provided efficiently by the proposed framework, which in turn can provide a useful reference for earthquake emergency response and scientific decision making for earthquake disaster relief.

Xinzheng LU ,   Qingle CHENG   et al.
The quality of information flow management has a remarkable effect on the entire life cycle of buildings. Manual retrieval of technical specifications and features of building components and their performance assessment leads to increased cost and time and efficiency reduction, especially during the facility management (FM) stage. The introduction of building information modeling (BIM) in the construction industry can provide a valuable means of improving the organization and exchange of information. BIM tools integrate multiple levels of information within a single digital model of a building. Nevertheless, the support given by BIM to FM is far from being fully effective. Technicians can benefit from real-time communication with the data repository whenever the need for gathering contextual information and/or updating any data in the digital model arises. The framework proposed in this study aims to develop a system that supports on-site operations. Information requirements have been determined from the analyses of procedures that are usually implemented in the building life cycle. These studies set the standard for the development of a digital model of a building, which will be shared among various actors in charge of FM and accessed via a cloud platform. Moreover, mixed reality is proposed to support specific information that is relevant to geometric features and procedures to be followed by operators. This article presents three use-cases supported by the proposed framework. In addition, this research article describes the first proof of concept regarding real-time support for FM.

During financial crisis, companies constantly need free cash flows to efficiently react to any uncertainty, thus ensuring solvency. Working capital requirement (WCR) has been recognized as a key factor for releasing tied up cash in companies. However, in literatures related to lot-sizing problem, WCR has only been studied in the single-level supply chain context. In this paper, we initially adopt WCR model for a multi-level case. A two-level (supplier–customer) model is established on the basis of the classic multi-level lot-sizing model integrated with WCR financing cost. To tackle this problem, we propose sequential and centralized approaches to solve the two-level case with a serial chain structure. The ZIO (Zero Inventory Ordering) property is further confirmed valid in both cases. This property allows us to establish a dynamic programming-based algorithm, which solves the problem in O(T ). Finally, numerical tests show differences in optimal plans obtained by both approaches and the influence of varying delays in payment on the WCR of both actors.

Yuan BIAN ,   David LEMOINE   et al.

Most Popular