In this paper, a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method, statistical analysis, mathematical-probabilistic analysis, and hydraulic simulation. The method proposed has two stages. In the first stage, typical scenarios are determined. In the second stage, hydraulic simulation is conducted to calculate the flow rate in each typical scenario. The result of the gas pipeline system calculated is the average gas supply reliability in each typical scenario. To verify the feasibility, the method proposed is applied for a real natural gas pipelines network system. The comparison of the results calculated and the actual gas supply reliability based on the filed data in the evaluation period suggests the assessment results of the method proposed agree well with the filed data. Besides, the effect of different components on gas supply reliability is investigated, and the most critical component is identified. For example, the 48th unit is the most critical component for the SH terminal station, while the 119th typical scenario results in the most severe consequence which causes the loss of 175.61×10 m gas when the 119th scenario happens. This paper provides a set of scientific and reasonable gas supply reliability indexes which can evaluate the gas supply reliability from two dimensions of quantity and time.

Feng CHEN ,   Changchun WU   et al.
In this paper, the optimization of hydrogen (H ) production by ammonia borane (NH BH ) over PdCoAg/AC was investigated using the response surface methodology. Besides, the electro-oxidation of NH BH was determined and optimized using the same method to measure its potential use in the direct ammonium boran fuel cells. Moreover, the ternary alloyed catalyst was synthesized using the chemical reduction method. The synergistic effect between Pd, Co and Ag plays an important role in enhancement of NH BH hydrolysis. In addition, the support effect could also efficiently improve the catalytic performance. Furthermore, the effects of NH BH concentration (0.1–50 mmol/5 mL), catalyst amount (1–30 mg) and temperature (20°C–50°C) on the rate of H production and the effects of temperature (20°C–50°C), NH BH concentration (0.05–1 mol/L) and catalyst amount (0.5–5 µL) on the electro-oxidation reaction of NH BH were investigated using the central composite design experimental design. The implementation of the response surface methodology resulted in the formulation of four models out of which the quadratic model was adjudged to efficiently appropriate the experimental data. A further statistical analysis of the quadratic model demonstrated the significance of the model with a p-value far less than 0.05 for each model and coefficient of determination ( ) of 0.85 and 0.95 for H production rate and NH BH electrroxidation peak current, respectively.

As the anode material of lithium-ion battery, silicon-based materials have a high theoretical capacity, but their volume changes greatly in the charging and discharging process. To ameliorate the volume expansion issue of silicon-based anode materials, g-C N /Si nanocomposites are prepared by using the magnesium thermal reduction technique. It is well known that g-C N /Si nanocomposites can not only improve the electronic transmission ability, but also ameliorate the physical properties of the material for adapting the stress and strain caused by the volume expansion of silicon in the lithiation and delithiation process. When g-C N /Si electrode is evaluated, the initial discharge capacity of g-C N /Si nanocomposites is as high as 1033.3 mAh/g at 0.1 A/g, and its reversible capacity is maintained at 548 mAh/g after 400 cycles. Meanwhile, the improved rate capability is achieved with a relatively high reversible specific capacity of 218 mAh/g at 2.0 A/g. The superior lithium storage performances benefit from the unique g-C N /Si nanostructure, which improves electroconductivity, reduces volume expansion, and accelerates lithium-ion transmission compared to pure silicon.

Zhengxu BIAN ,   Zehua TANG   et al.
The coal and biomass coupling power generation technology is considered as a promising technology for energy conservation and emission reduction. In this paper, a novel coal and biomass indirect coupling system is proposed based on the technology of biomass gasification and co-combustion of coal and gasification gas. For the sake of comparison, a coal and biomass direct coupling system is also introduced based on the technology of co-combustion of coal and biomass. The process of the direct and the indirect coupling system is simulated. The thermodynamic and economic performances of two systems are analyzed and compared. The simulation indicates that the thermodynamic performance of the indirect coupling system is slightly worse, but the economic performance is better than that of the direct coupling system. When the blending ratio of biomass is 20%, the energy and exergy efficiencies of the indirect coupling system are 42.70% and 41.14%, the internal rate of return (IRR) and discounted payback period (DPP) of the system are 25.68% and 8.56 years. The price fluctuation of fuels and products has a great influence on the economic performance of the indirect coupling system. The environmental impact analysis indicates that the indirect coupling system can inhibit the propagation of NO and reduce the environmental cost.

Buqing YE ,   Rui ZHANG   et al.

Most Popular