In structural design optimization involving transient responses, time integration scheme plays a crucial role in sensitivity analysis because it affects the accuracy and stability of transient analysis. In this work, the influence of time integration scheme is studied numerically for the adjoint shape sensitivity analysis of two benchmark transient heat conduction problems within the framework of isogeometric analysis. It is found that (i) the explicit approach ( = 0) and semi-implicit approach with <0.5 impose a strict stability condition of the transient analysis; (ii) the implicit approach ( =1) and semi-implicit approach with > 0.5 are generally preferred for their unconditional stability; and (iii) Crank–Nicolson type approach ( =0.5) may induce a large error for large time-step sizes due to the oscillatory solutions. The numerical results also show that the time-step size does not have to be chosen to satisfy the critical conditions for all of the eigen-frequencies. It is recommended to use for unconditional stability, such that the oscillation condition is much less critical than the Crank–Nicolson scheme, and the accuracy is higher than a fully implicit approach.

Zhen-Pei WANG ,   Zhifeng XIE   et al.
Micro-stepping motion of ultrasonic motors satisfies biomedical applications, such as cell operation and nuclear magnetic resonance, which require a precise compact-structure non-magnetization positioning device. When the pulse number is relatively small, the stopping characteristics have a non-negligible effect on the entire stepwise process. However, few studies have been conducted to show the rule of the open-loop stepwise motion, especially the shutdown stage. In this study, the modal differences of the shutdown stage are found connected with amplitude and velocity at the turn-off instant. Changes of the length in the contact area and driving zone as well as the input currents, vibration states, output torque, and axial pressure are derived by a simulation model to further explore the rules. The speed curves and vibration results in functions of different pulse numbers are compared, and the stepwise motion can be described by a two-stage two-order transfer function. A test workbench based on the Field Programmable Gate Array is built for acquiring the speed, currents, and feedback voltages of the startup–shutdown stage accurately with the help of its excellent synchronization performances. Therefore, stator vibration, rotor velocity, and terminal displacements under different pulse numbers can be compared. Moreover, the two-stage two-order model is identified on the stepwise speed curves, and the fitness over 85% between the simulation and test verifies the model availability. Finally, with the optimization of the pulse number, the motor achieves 3.3 µrad in clockwise and counterclockwise direction.

Ning CHEN ,   Jieji ZHENG   et al.
Studies on determining and analyzing the crushing response of tubular structures are of significant interest, primarily due to their relation to safety. Several aspects of tubular structures, such as geometry, material, configuration, and hybrid structure, have been used as criteria for evaluation. In this review, a comprehensive analysis of the important findings of extensive research on understanding the crushing response of thin-walled tubular structures is presented. Advancements in thin-walled structures, including multi-cell tube, honeycomb and foam-filled, multi wall, and functionally graded thickness tubes, are also discussed, focusing on their energy absorption ability. An extensive review of experimentation and numerical analysis used to extract the deformation behavior of materials, such as aluminum and steel, against static and dynamic loadings are also provided. Several tube shapes, such as tubes of uniform and nonuniform (tapered) cross sections of circular, square, and rectangular shapes, have been used in different studies to identify their efficacy. Apart from geometric and loading parameters, the effects of fabrication process, heat treatment, and triggering mechanism on initiating plastic deformation, such as cutouts and grooves, on the surface of tubular structures are discussed.

Vivek PATEL ,   Gaurav TIWARI   et al.
A high-efficiency polishing approach using two-phase air–water fluid (TAWF) is proposed to avoid surface contamination and solve the inefficiency of previous water-dissolution polishing techniques for potassium dihydrogen phosphate (KDP) crystal. In the proposed method, controllable deliquescence is implemented without any chemical impurity. The product of deliquescence is then removed by a polishing pad to achieve surface planarization. The mechanism underlying TAWF polishing is analyzed, a special device is built to polish the KDP crystal, and the effect of relative humidity (RH) on polishing performance is studied. The relationship between key parameters of polishing and surface planarization is also investigated. Results show that the polishing performance is improved with increasing RH. However, precisely controlling the RH is extremely difficult during TAWF polishing. Controllable deliquescence can easily be disrupted once the RH fluctuates, which therefore needs to be restricted to a low level to avoid its influence on deliquescence rate. The material removal of TAWF polishing is mainly attributed to the synergistic effect of deliquescence and the polishing pad. Excessive polishing pressure and revolution rate remarkably reduce the life of the polishing pad and the surface quality of the KDP crystal. TAWF polishing using IC-1000 and TEC-168S increase the machining efficiency by 150%, and a smooth surface with a root mean square surface roughness of 5.5 nm is obtained.

Ziyuan LIU ,   Hang GAO   et al.

Most Popular