Research on the quality of data in a structural calculation document (SCD) is lacking, although the SCD of a bridge is used as an essential reference during the entire lifecycle of the facility. XML Schema matching enables qualitative improvement of the stored data. This study aimed to enhance the applicability of XML Schema matching, which improves the speed and quality of information stored in bridge SCDs. First, the authors proposed a method of reducing the computing time for the schema matching of bridge SCDs. The computing speed of schema matching was increased by 13 to 1800 times by reducing the checking process of the correlations. Second, the authors developed a heuristic solution for selecting the optimal weight factors used in the matching process to maintain a high accuracy by introducing a decision tree. The decision tree model was built using the content elements stored in the SCD, design companies, bridge types, and weight factors as input variables, and the matching accuracy as the target variable. The inverse-calculation method was applied to extract the weight factors from the decision tree model for high-accuracy schema matching results.

Sang I. PARK ,   Sang-Ho LEE   et al.
Self-consolidating concrete (SCC) with manufactured sand (MSCC) is crucial to guarantee the quality of concrete construction technology and the associated property. The properties of MSCC with different microlimestone powder (MLS) replacements of retreated manufactured sand (TMsand) are investigated in this study. The result indicates that high-performance SCC, made using TMsand (TMSCC), achieved high workability, good mechanical properties, and durability by optimizing MLS content and adding fly ash and silica fume. In particular, the TMSCC with 12% MLS content exhibits the best workability, and the TMSCC with 4% MLS content has the highest strength in the late age, which is even better than that of SCC made with the river sand (Rsand). Though MLS content slightly affects the hydration reaction of cement and mainly plays a role in the nucleation process in concrete structures compared to silica fume and fly ash, increasing MLS content can evidently have a significant impact on the early age hydration progress. TMsand with MLS content ranging from 8% to 12% may be a suitable alternative for the Rsand used in the SCC as fine aggregate. The obtained results can be used to promote the application of SCC made with manufactured sand and mineral admixtures for concrete-based infrastructure.

Fulin Qu ,   Wengui Li   et al.
A theoretical solution is aimed to be developed in this research for predicting the failure in internally pressurized composite pressure vessels exposed to low-velocity impact. Both in-plane and out-of-plane failure modes are taken into account simultaneously and thus all components of the stress and strain fields are derived. For this purpose, layer-wise theory is employed in a composite cylinder under internal pressure and low-velocity impact. Obtained stress/strain components are fed into appropriate failure criteria for investigating the occurrence of failure. In case of experiencing any in-plane failure mode, the evolution of damage is modeled using progressive damage modeling in the context of continuum damage mechanics. Namely, mechanical properties of failed ply are degraded and stress analysis is performed on the updated status of the model. In the event of delamination occurrence, the solution is terminated. The obtained results are validated with available experimental observations in open literature. It is observed that the sequence of in-plane failure and delamination varies by increasing the impact energy.

Permeability is a major indicator of concrete durability, and depends primarily on the microstructure characteristics of concrete, including its porosity and pore size distribution. In this study, a variety of concrete samples were prepared to investigate their microstructure characteristics via nuclear magnetic resonance (NMR), mercury intrusion porosimetry (MIP), and X-ray computed tomography (X-CT). Furthermore, the chloride diffusion coefficient of concrete was measured to explore its correlation with the microstructure of the concrete samples. Results show that the proportion of pores with diameters<1000 nm obtained by NMR exceeds that obtained by MIP, although the difference in the total porosity determined by both methods is minimal. X-CT measurements obtained a relatively small porosity; however, this likely reflects the distribution of large pores more accurately. A strong correlation is observed between the chloride diffusion coefficient and the porosity or contributive porosity of pores with sizes<1000 nm. Moreover, microstructure parameters measured via NMR reveal a lower correlation coefficient versus the chloride diffusion coefficient relative to the parameters determined via MIP, as NMR can measure non-connected as well as connected pores. In addition, when analyzing pores with sizes>50 µm, X-CT obtains the maximal contributive porosity, followed by MIP and NMR.

Yurong ZHANG ,   Shengxuan XU   et al.

Most Popular