化学工程师的主动机器学习

Yannick Ureel , Maarten R. Dobbelaere , Yi Ouyang , Kevin De Ras , Maarten K. Sabbe , Guy B. Marin , Kevin M. Van Geem

Engineering ›› 2023, Vol. 27 ›› Issue (8) : 23 -30.

PDF
Engineering ›› 2023, Vol. 27 ›› Issue (8) : 23 -30. DOI: 10.1016/j.eng.2023.02.019
研究论文

化学工程师的主动机器学习

作者信息 +

Active Machine Learning for Chemical Engineers: A Bright Future Lies Ahead!

Author information +
文章历史 +
PDF

Abstract

By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering. While active machine learning algorithms are maturing, their applications are falling behind. In this article, three types of challenges presented by active machine learning—namely, convincing the experimental researcher, the flexibility of data creation, and the robustness of active machine learning algorithms—are identified, and ways to overcome them are discussed. A bright future lies ahead for active machine learning in chemical engineering, thanks to increasing automation and more efficient algorithms that can drive novel discoveries.

关键词

Key words

Active machine learning / Active learning / Bayesian optimization / Chemical engineering / Design of experiments

引用本文

引用格式 ▾
Yannick Ureel,Maarten R. Dobbelaere,Yi Ouyang,Kevin De Ras,Maarten K. Sabbe,Guy B. Marin,Kevin M. Van Geem. 化学工程师的主动机器学习[J]. 工程(英文), 2023, 27(8): 23-30 DOI:10.1016/j.eng.2023.02.019

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

1940

访问

0

被引

详细

导航
相关文章

AI思维导图

/