防控大语言模型赋能的智能聊天机器人全生命周期能源与碳足迹剧增

蒋鹏 , Christian Sonne , 李望良 , Fengqi You , Siming You

工程(英文) ›› 2024, Vol. 40 ›› Issue (9) : 216 -225.

PDF (2255KB)
工程(英文) ›› 2024, Vol. 40 ›› Issue (9) : 216 -225. DOI: 10.1016/j.eng.2024.04.002
研究论文

防控大语言模型赋能的智能聊天机器人全生命周期能源与碳足迹剧增

作者信息 +

Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots

Author information +
文章历史 +
PDF (2308K)

摘要

近年来,大语言模型(large language model, LLM)赋能的智能聊天机器人在全球范围内迅速发展,并展现出广泛的行业应用潜力。全球前沿科技公司正积极参与基于LLM的聊天机器人设计与开发,除了广为人知的ChatGPT之外,市场上也涌现了多种替代方案。然而,训练、微调及更新此类智能聊天机器人需要消耗大量电力,从而导致显著的碳排放。所有LLM及其软件和硬件(如图形处理单元及超级计算机)的研发制造、相关数据及运营管理,以及支持聊天机器人服务的材料回收等环节,均不同程度地伴随能源消耗及碳排放。因此,当前及未来应关注基于LLM的智能聊天机器人全生命周期的能耗及碳足迹,以缓解其对气候变化的影响。本研究明确并强调了在此类智能聊天机器人开发的生命周期中八个主要阶段的能源消耗及碳排放影响。基于这些阶段的生命周期及相互作用分析,我们提出一种系统级解决方案,并通过三条战略路径优化该行业管理,从而降低相关碳足迹。在预见这一先进技术及其产品巨大潜力的同时,我们呼吁重新思考大语言模型赋能的智能聊天机器人行业全生命周期的能耗与碳排放的减排路径与策略,并在其早期发展阶段重塑其能源与环境影响。

Abstract

Intelligent chatbots powered by large language models (LLMs) have recently been sweeping the world, with potential for a wide variety of industrial applications. Global frontier technology companies are feverishly participating in LLM-powered chatbot design and development, providing several alternatives beyond the famous ChatGPT. However, training, fine-tuning, and updating such intelligent chatbots consume substantial amounts of electricity, resulting in significant carbon emissions. The research and development of all intelligent LLMs and software, hardware manufacturing (e.g., graphics processing units and supercomputers), related data/operations management, and material recycling supporting chatbot services are associated with carbon emissions to varying extents. Attention should therefore be paid to the entire life-cycle energy and carbon footprints of LLM-powered intelligent chatbots in both the present and future in order to mitigate their climate change impact. In this work, we clarify and highlight the energy consumption and carbon emission implications of eight main phases throughout the life cycle of the development of such intelligent chatbots. Based on a life-cycle and interaction analysis of these phases, we propose a system-level solution with three strategic pathways to optimize the management of this industry and mitigate the related footprints. While anticipating the enormous potential of this advanced technology and its products, we make an appeal for a rethinking of the mitigation pathways and strategies of the life-cycle energy usage and carbon emissions of the LLM-powered intelligent chatbot industry and a reshaping of their energy and environmental implications at this early stage of development.

关键词

大语言模型 / 智能聊天机器人 / 碳排放 / 能源与环境足迹 / 全生命周期评估 / 全球合作

Key words

Large language models / Intelligent chatbots / Carbon emissions / Energy and environmental footprints / Life-cycle assessment / Global cooperation

引用本文

引用格式 ▾
蒋鹏, Christian Sonne, 李望良, Fengqi You, Siming You 防控大语言模型赋能的智能聊天机器人全生命周期能源与碳足迹剧增[J]. 工程(英文), 2024, 40(9): 216-225 DOI:10.1016/j.eng.2024.04.002

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF (2255KB)

1572

访问

0

被引

详细

导航
相关文章

AI思维导图

/