An Analytical Comparison of the Performance of Various Sensing Materials and Mechanisms for Efficient Detection Capability of Greenhouse Gas Emissions

Mostafa Rastgou , Yong He , Qianjing Jiang

Engineering ››

PDF (2941KB)
Engineering ›› DOI: 10.1016/j.eng.2024.11.008

An Analytical Comparison of the Performance of Various Sensing Materials and Mechanisms for Efficient Detection Capability of Greenhouse Gas Emissions

Author information +
History +
PDF (2941KB)

Abstract

Increasing greenhouse gas (GHG) emissions, such as methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), from agricultural practices and land use have increased concerns about global warming. Accurate quantification of the GHG using gas sensors is essential for effective management and sustainable agricultural practices. The objective of this study was to make an analytical comparison of the performance of various sensing materials for CH4, N2O, and CO2-based sensors in terms of sensitivity, response ratio, response time, and recovery time to establish an efficiency detection level of the GHG emissions. A literature review of 95 different studies showed that palladium-tin dioxide nanoparticles (Pd-SnO2), indium oxide (In2O3) nanowires, and gold-lanthanum oxide-doped tin dioxide nanofibers (Au-La2O3/SnO2) had better performance compared to other sensing materials in CH4, N2O and CO2-based sensors, respectively. The findings from reviewed studies revealed that nanoporous structures, nanowires and nanofibers had faster response and recovery compared to conventional materials due to their big specific surface area (SSA). The designed ternary hybrid structure of sensing materials was more effective for CO2 gas detection than the double hybrid structure, unlike CH4 and N2O-based sensors. However, constructive suggestions for researchers were discussed in the conclusion based on the current research status and challenges to improve the performance of GHG sensors.

Keywords

Analytical comparison / Greenhouse gases / Sensing materials / Sensing mechanisms / Sensor

Cite this article

Download citation ▾
Mostafa Rastgou, Yong He, Qianjing Jiang. An Analytical Comparison of the Performance of Various Sensing Materials and Mechanisms for Efficient Detection Capability of Greenhouse Gas Emissions. Engineering DOI:10.1016/j.eng.2024.11.008

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement
Mostafa Rastgou: Writing - original draft, Formal analysis, Data curation. Yong He: Writing - review & editing, Supervision. Qianjing Jiang: Writing - review & editing, Supervision, Funding acquisition, Conceptualization.
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgments
This work was supported by Key Pioneer Research Project of Zhejiang Province (2022C02014) and National Natural Science Foundation of China (32271980).
Compliance with ethics guidelines
Mostafa Rastgou, Yong He, and Qianjing Jiang declare that they have no conflict of interest or financial conflicts to disclose.

References

[1]

S.A. Montzka, E.J. Dlugokencky, J.H. Butler. Non-CO 2 greenhouse gases and climate change . Nature, 476 ( 7358) ( 2011), pp. 43- 50

[2]

A. Ansuategi, M. Escapa. Economic growth and greenhouse gas emissions. Ecol Econ, 40 ( 1) ( 2002), pp. 23- 37

[3]

W.F. Lamb, T. Wiedmann, J. Pongratz, R. Andrew, M. Crippa, J.G.J. Olivier, et al. . A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ Res Lett, 16 ( 7) ( 2021), Article 073005

[4]

J.G. Olivier, K. Schure, J. Peters. Trends in global CO 2 and total greenhouse gas emissions . Report. Hague: PBL Netherlands Environmental Assessment Agency, 4331 ( 2020), pp. 1- 85

[5]

X. Xuan, F. Zhang, X. Deng, Y. Bai. Measurement and spatio-temporal transfer of greenhouse gas emissions from agricultural sources in China: a food trade perspective. Resour Conserv Recycling, 197 ( 2023), Article 107100

[6]

Q. Wu, Y. He, Z. Qi, Q. Jiang. Drainage in paddy systems maintains rice yield and reduces total greenhouse gas emissions on the global scale. J Clean Prod, 370 ( 2022), Article 133515

[7]

S.M. Vaghar Seyedin, A. Zeidi, E. Chamanehpour, M.H. Nasri, E. Vargas-Bello-Pérez. Methane emission: strategies to reduce global warming in relation to animal husbandry units with emphasis on ruminants. Sustainability, 14 ( 24) ( 2022), p. 16897

[8]

S.O. Petersen, L.E.K. Peixoto, H. Sørensen, A. Tariq, A. Brændholt, L.V. Hansen, et al. . Higher N 2O emissions from organic compared to synthetic N fertilisers on sandy soils in a cool temperate climate . Agric Ecosyst Environ, 358 ( 2023), Article 108718

[9]

Z. He, B. Ding, S. Pei, H. Cao, J. Liang, Z. Li. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. Sci Total Environ, 905 ( 2023), Article 166917

[10]

M. Galic, M. Mesic, Z. Zgorelec. Influence of organic and mineral fertilization on soil greenhouse gas emissions. A review. ACS Agric Conspec Sci, 85 ( 2020), pp. 1- 8

[11]

A.B. Avagyan. Theory of bioenergy accumulation and transformation: application to evolution, energy, sustainable development, climate change, manufacturing, agriculture, military activity and pandemic challenges. Athens J Sci, 8 ( 1) ( 2021), pp. 57- 80

[12]

M.F. Aslan, A. Durdu, K. Sabanci, E. Ropelewska, S.S. Gültekin. A comprehensive survey of the recent studies with uav for precision agriculture in open fields and greenhouses. Appl Sci, 12 ( 3) ( 2022), p. 1047

[13]

M.Y. Kim, K.H. Lee. Electrochemical sensors for sustainable precision agriculture—a review. Front Chem, 10 ( 2022), Article 848320

[14]

K.S.V. Santhanam, N.N. Ahamed. Greenhouse gas sensors fabricated with new materials for climatic usage: a review. ChemEngineering, 2 ( 3) ( 2018), p. 38

[15]

M. Borhan, M. Khanaum. Sensors and methods for measuring greenhouse gas emissions from different components of livestock production facilities. J Geosci Environ Prot, 10 ( 12) ( 2022), pp. 242- 272

[16]

M. Zaman, C. Müller, S. Chang, A. Sanz-Cobena. Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques. Springer nature, Berlin ( 2021)

[17]

J. Milam-Guerrero, B. Yang, D.T. To, N.V. Myung. Nitrous oxide is no laughing matter: a historical review of nitrous oxide gas-sensing capabilities highlighting the need for further exploration. ACS Sens, 7 ( 12) ( 2022), pp. 3598- 3610

[18]

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning. A survey on gas sensing technology. Sensors, 12 ( 7) ( 2012), pp. 9635- 9665

[19]

Y.K. Gautam, K. Sharma, S. Tyagi, A.K. Ambedkar, M. Chaudhary, S.B. Pal. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: progress and challenges. R Soc Open Sci, 8 ( 3) ( 2021), Article 201324

[20]

S. Mulmi, V. Thangadurai. Editors’ choice—review—solid-state electrochemical carbon dioxide sensors: fundamentals, materials and applications. J Electrochem Soc, 167 ( 3) ( 2020), Article 037567

[21]

P. Rajasekar, J.A.V. Selvi. Sensing and analysis of greenhouse gas emissions from rice fields to the near field atmosphere. Sensors, 22 ( 11) ( 2022), p. 4141

[22]

S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim. Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy, 79 ( 2021), Article 105369

[23]

T. Aldhafeeri, M.K. Tran, R. Vrolyk, M. Pope, M. Fowler. A review of methane gas detection sensors: recent developments and future perspectives. Inventions, 5 ( 3) ( 2020), p. 28

[24]

P. Zhang, Y. Xiao, J. Zhang, B. Liu, X. Ma, Y. Wang. Highly sensitive gas sensing platforms based on field effect transistor—a review. Anal Chim Acta, 1172 ( 2021), Article 338575

[25]

K.A. Bushra, K.S. Prasad. Based field-effect transistor sensors. Talanta, 239 ( 2022), Article 123085

[26]

J. Zhang, L. Liu, Y. Yang, Q. Huang, D. Li, D. Zeng. A review on two-dimensional materials for chemiresistive-and FET-type gas sensors. Phys Chem Chem Phys, 23 ( 29) ( 2021), pp. 15420- 15439

[27]

A. Kumar, R. Prajesh. The potential of acoustic wave devices for gas sensing applications. Sens Actuators A Phys, 339 ( 2022), Article 113498

[28]

M.E. Morales-Rodriguez, P.C. Joshi, J.R. Humphries, P.L. Fuhr, T.J. Mcintyre. Fabrication of low cost surface acoustic wave sensors using direct printing by aerosol inkjet. IEEE Access, 6 ( 2018), pp. 20907- 20915

[29]

Z. Yunusa, M.N. Hamidon, A. Kaiser, Z. Awang. Gas sensors: a review. Sens Transducers, 168 ( 4) ( 2014), pp. 61- 75

[30]

E. Brauns, E. Morsbach, S. Kunz, M. Bäumer, W. Lang. A fast and sensitive catalytic gas sensors for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sens Actuators B Chem, 193 ( 2014), pp. 895- 903

[31]

J.H. Lee, M.S. Park, H. Jung, Y.S. Choe, W. Kim, Y.G. Song, et al. . Selective C 2H 2 detection with high sensitivity using SnO 2 nanorod based gas sensors integrated with a gas chromatography . Sens Actuators B Chem, 307 ( 2020), Article 127598

[32]

R. Pascale, M. Caivano, A. Buchicchio, I.M. Mancini, G. Bianco, D. Caniani. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system. J Chromatogr A, 1480 ( 2017), pp. 62- 69

[33]

R. Bogue. Detecting gases with light: a review of optical gas sensor technologies. Sens Rev, 35 ( 2) ( 2015), pp. 133- 140

[34]

J. Li, Z. Yu, Z. Du, Y. Ji, C. Liu. Standoff chemical detection using laser absorption spectroscopy: a review. Remote Sens, 12 ( 17) ( 2020), p. 2771

[35]

M. Xu, B. Peng, X. Zhu, Y. Guo. Multi-gas detection system based on non-dispersive infrared (NDIR) spectral technology. Sensors, 22 ( 3) ( 2022), p. 836

[36]

T. Yang, W. Chen, P. Wang. A review of all-optical photoacoustic spectroscopy as a gas sensing method. Appl Spectrosc Rev, 56 ( 2) ( 2021), pp. 143- 170

[37]

N.D. Hoa, N.V. Duy, S.A. El-Safty, N.V. Hieu. Meso-/nanoporous semiconducting metal oxides for gas sensor applications. J Nanomater, 2015 ( 2015), Article 972025

[38]

C. Love, H. Nazemi, E. El-Masri, K. Ambrose, M.S. Freund, A. Emadi. A review on advanced sensing materials for agricultural gas sensors. Sensors, 21 ( 10) ( 2021), p. 3423

[39]

Y. Yan, G. Yang, J. Xu, M. Zhang, C.C. Kuo, S.D. Wang. Conducting polymer-inorganic nanocomposite-based gas sensors: a review. Sci Technol Adv Mater, 21 ( 1) ( 2020), pp. 768- 786

[40]

S.J. Park, C.S. Park, H. Yoon. Chemo-electrical gas sensors based on conducting polymer hybrids. Polymers (Basel), 9 ( 5) ( 2017), p. 155

[41]

Y. Wang, A. Liu, Y. Han, T. Li. Sensors based on conductive polymers and their composites: a review. Polym Int, 69 ( 1) ( 2020), pp. 7- 17

[42]

K. Kumari, S. Ram. Sensitivity study of nanocrystalline Fe 3BO 6 sensor for methane gas detection . IEEE Sens J, 18 ( 20) ( 2018), pp. 8230- 8237

[43]

R.C. Abruzzi, M.J.R. Pires, B.A. Dedavid, C.F. Galli. Application of SnO 2 nanoparticles and zeolites in coal mine methane sensors . Mater Res, 22 ( suppl 1) ( 2019), p. e20180818

[44]

L. Yao, Y. Li, Y. Ran, Y. Yang, R. Zhao, L. Su, et al. . Construction of novel Pd-SnO 2 composite nanoporous structure as a high-response sensor for methane gas. J Alloys Compd , 826 ( 2020), Article 154063

[45]

M. Kooti, S. Keshtkar, M. Askarieh, A. Rashidi. Progress toward a novel methane gas sensor based on SnO 2 nanorods-nanoporous graphene hybrid . Sens Actuators B Chem, 281 ( 2019), pp. 96- 106

[46]

S. Nasresfahani, M.H. Sheikhi, M. Tohidi, A. Zarifkar. Methane gas sensing properties of Pd-doped SnO 2/reduced graphene oxide synthesized by a facile hydrothermal route . Mater Res Bull, 89 ( 2017), pp. 161- 169

[47]

R. Chen, J. Wang, S. Luo, L. Xiang, W. Li, D. Xie. Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature. Appl Catal B, 264 ( 2020), Article 118554

[48]

J. Liang, W. Li, J. Liu, M. Hu. Room temperature CH 4 sensing properties of Au decorated VO 2 nanosheets . Mater Lett, 184 ( 2016), pp. 92- 95

[49]

J. Lančok, A. Santoni, M. Penza, S. Loreti, I. Menicucci, C. Minarini, et al. . Tin oxide thin films prepared by laser-assisted metal-organic CVD: structural and gas sensing properties. Surf Coat Tech, 200 ( 1-4) ( 2005), pp. 1057- 1060

[50]

T. Wagner, M. Bauer, T. Sauerwald, C.D. Kohl, M. Tiemann. X-ray absorption near-edge spectroscopy investigation of the oxidation state of Pd species in nanoporous SnO 2 gas sensors for methane detection . Thin Solid Films, 520 ( 3) ( 2011), pp. 909- 912

[51]

Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, et al. . Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film. IEEE Sens J, 13 ( 2) ( 2012), pp. 777- 782

[52]

J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie. Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl Mater Interfaces, 5 ( 15) ( 2013), pp. 7410- 7416

[53]

A.K. Prasad, S. Amirthapandian, S. Dhara, S. Dash, N. Murali, A.K. Tyagi. Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature. Sens Actuators B Chem, 191 ( 2014), pp. 252- 256

[54]

N.M. Vuong, N.M. Hieu, H.N. Hieu, H. Yi, D. Kim, Y.S. Han, et al. . Ni 2O 3-decorated SnO 2 particulate films for methane gas sensors . Sens Actuators B Chem, 192 ( 2014), pp. 327- 333

[55]

Z. Wang, M. Guo, G.A. Baker, J.R. Stetter, L. Lin, A.J. Mason, et al. . Methane-oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification. Analyst, 139 ( 20) ( 2014), pp. 5140- 5147

[56]

A. Amutha, S. Amirthapandian, A. Prasad, B. Panigrahi, P. Thangadurai. Methane gas sensing at relatively low operating temperature by hydrothermally prepared SnO2 nanorods. J Nanopart Res, 17 ( 7) ( 2015), p. 289

[57]

Z. Karami Horastani, S.M. Sayedi, M.H. Sheikhi, E. Rahimi. Effect of silver additive on electrical conductivity and methane sensitivity of SnO 2 . Mater Sci Semicond Process, 35 ( 2015), pp. 38- 44

[58]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, W. Chen. Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition. Sens Actuators B Chem, 207 ( 2015), pp. 477- 480

[59]

W. Li, J. Liang, J. Liu, L. Zhou, R. Yang, M. Hu. Synthesis and room temperature CH 4 gas sensing properties of vanadium dioxide nanorods . Mater Lett, 173 ( 2016), pp. 199- 202

[60]

J. Liang, J. Liu, N. Li, W. Li. Magnetron sputtered Au-decorated vanadium oxides composite thin films for methane-sensing properties at room temperature. J Alloys Compd, 671 ( 2016), pp. 283- 290

[61]

J. Liang, J. Liu, W. Li, M. Hu. Preparation and room temperature methane sensing properties of platinum-decorated vanadium oxide films. Mater Res Bull, 84 ( 2016), pp. 332- 339

[62]

P. Dhivya, A.K. Prasad, M. Sridharan. Nanostructured perovskite CdTiO 3 films for methane sensing . Sens Actuators B Chem, 222 ( 2016), pp. 987- 993

[63]

K. Schneider, M. Lubecka, A. Czapla. V 2O 5 thin films for gas sensor applications . Sens Actuators B Chem, 236 ( 2016), pp. 970- 977

[64]

N. Shaalan, M. Rashad, A. Moharram, M. Abdel-Rahim. Promising methane gas sensor synthesized by microwave-assisted Co 3O 4 nanoparticles . Mater Sci Semicond Process, 46 ( 2016), pp. 1- 5

[65]

H. Yin, H. Wan, L. Lin, X. Zeng, A.J. Mason. Miniaturized planar RTIL-based eletrochemical gas sensor for real-time point-of-exposure monitoring, IEEE, Cancun, Mexico. Piscataway ( 2016), pp. 85- 88

[66]

P.K. Sekhar, J. Kysar, E.L. Brosha, C.R. Kreller. Development and testing of an electrochemical methane sensor. Sens Actuators B Chem, 228 ( 2016), pp. 162- 167

[67]

G. Fedorenko, L. Oleksenko, N. Maksymovych, G. Skolyar, O. Ripko. Semiconductor gas sensors based on Pd/SnO2 nanomaterials for methane detection in air. Nanoscale Res Lett, 12 ( 2017), p. 329

[68]

L. Oleksenko, G. Fedorenko, N. Maksymovych. Platinum-containing adsorption-semiconductor sensors based on nanosized tin dioxide for methane detection. Theor Exp Chem, 53 ( 4) ( 2017), pp. 259- 264

[69]

G. Chimowa, Z.P. Tshabalala, A.A. Akande, G. Bepete, B. Mwakikunga, S.S. Ray, et al. . Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sens Actuators B Chem, 247 ( 2017), pp. 11- 18

[70]

L. Yang, Z. Wang, X. Zhou, X. Wu, N. Han, Y. Chen. Synthesis of Pd-loaded mesoporous SnO 2 hollow spheres for highly sensitive and stable methane gas sensors . RSC Advances, 8 ( 43) ( 2018), pp. 24268- 24275

[71]

Z. Aghagoli, M. Ardyanian. Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures. J Mater Sci Mater Electron, 29 ( 9) ( 2018), pp. 7130- 7141

[72]

W. Lu, D. Ding, Q. Xue, Y. Du, Y. Xiong, J. Zhang, et al. . Great enhancement of CH 4 sensitivity of SnO 2 based nanofibers by heterogeneous sensitization and catalytic effect . Sens Actuators B Chem, 254 ( 2018), pp. 393- 401

[73]

D. Zhang, Z. Wu, P. Li, X. Zong, G. Dong, Y. Zhang. Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sens Actuators B Chem, 258 ( 2018), pp. 895- 905

[74]

M. Dosi, I. Lau, Y. Zhuang, D.S. Simakov, M.W. Fowler, M.A. Pope. Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused laser-induced graphene. ACS Appl Mater Interfaces, 11 ( 6) ( 2019), pp. 6166- 6173

[75]

S. Zhang, Y. Li, G. Sun, B. Zhang, Y. Wang, J. Cao, et al. . Enhanced methane sensing properties of porous NiO nanaosheets by decorating with SnO 2 . Sens Actuators B Chem, 288 ( 2019), pp. 373- 382

[76]

P. Hong, Y. Li, X. Zhang, S. Peng, R. Zhao, Y. Yang, et al. . Nanoporous network SnO 2 constructed with ultra-small nanoparticles for methane gas sensor . J Mater Sci Mater Electron, 30 ( 15) ( 2019), pp. 14325- 14334

[77]

D. Xue, P. Wang, Z. Zhang, Y. Wang. Enhanced methane sensing property of flower-like SnO 2 doped by Pt nanoparticles: a combined experimental and first-principle study . Sens Actuators B Chem, 296 ( 2019), Article 126710

[78]

B. Yang, J. Xu, C. Wang, J. Xiao. A potentiometric sensor based on SmMn 2O 5 sensing electrode for methane detection . Mater Chem Phys, 245 ( 2020), Article 122679

[79]

X. Li, Y. Li, G. Sun, B. Zhang, Y. Wang, Z. Zhang. Enhanced CH 4 sensitivity of porous nanosheets-assembled ZnO microflower by decoration with Zn 2SnO 4 . Sens Actuators B Chem, 304 ( 2020), Article 127374

[80]

V. Mounasamy, G.K. Mani, D. Ponnusamy, K. Tsuchiya, P. Reshma, A.K. Prasad, et al. . Investigation on CH 4 sensing characteristics of hierarchical V 2O 5 nanoflowers operated at relatively low temperature using chemiresistive approach . Anal Chim Acta, 1106 ( 2020), pp. 148- 160

[81]

H. Fu, X. Wang, J. Ding, X. Yan, Z. Zhao, Z. Zhang. SnO 2/Graphene incorporated optical fiber Mach-Zehnder interferometer for methane gas detection . Opt Fiber Technol, 74 ( 2022), Article 103126

[82]

J. Li, Y. Ma, Z. Duan, Y. Zhang, X. Duan, B. Liu, et al. . Local dynamic neural network for quantitative analysis of mixed gases. Sens Actuators B Chem, 404 ( 2024), Article 135230

[83]

J. Shi, Y. Jiang, Z. Duan, J. Li, Z. Yuan, H. Tai. Designing an optical gas chamber with stepped structure for non-dispersive infrared methane gas sensor. Sens Actuators A Phys, 367 ( 2024), Article 115052

[84]

B. Deb, S. Desai, G.U. Sumanasekera, M.K. Sunkara. Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films. Nanotechnology, 18 ( 28) ( 2007), Article 285501

[85]

C.S. Rout, K. Ganesh, A. Govindaraj, C.N.R. Rao. Sensors for the nitrogen oxides, NO 2, NO and N 2O, based on In 2O 3 and WO 3 nanowires . Appl Phys, A Mater Sci Process, 85 ( 3) ( 2006), pp. 241- 246

[86]

J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, M. Niederberger. Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem Int Ed, 45 ( 2) ( 2005), pp. 261- 265

[87]

Y.K. Chung, M.H. Kim, W.S. Um, H.S. Lee, J.K. Song, S.C. Choi, et al. . Gas sensing properties of WO 3 thick film for NO 2 gas dependent on process condition . Sens Actuators B Chem, 60 ( 1) ( 1999), pp. 49- 56

[88]

C. Cantalini, H.T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, et al. . NO 2 sensitivity of WO 3 thin film obtained by high vacuum thermal evaporation . Sens Actuators B Chem, 31 ( 1-2) ( 1996), pp. 81- 87

[89]

A. Chaturvedi, V.N. Mishra, R. Dwivedi, S.K. Srivastava. Selectivity and sensitivity studies on plasma treated thick film tin oxide gas sensors. Microelectronics J, 31 ( 4) ( 2000), pp. 283- 290

[90]

E. Kanazawa, M. Kugishima, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura, et al. . Mixed-potential type N 2O sensor using stabilized zirconia- and SnO 2-based sensing electrode . Sens Actuators B Chem, 75 ( 1-2) ( 2001), pp. 121- 124

[91]

E. Kanazawa, G. Sakai, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura, et al. . Metal oxide semiconductor N 2O sensor for medical use. Sens Actuators B Chem , 77 ( 1-2) ( 2001), pp. 72- 77

[92]

K. Mukherjee, S.B. Majumder. Reducing gas sensing behavior of nano-crystalline magnesium-zinc ferrite powders. Talanta, 81 ( 4-5) ( 2010), pp. 1826- 1832

[93]

M.T. Asmah, O. Sidek, S.D. Hutagalung. Junctionless silicon-based device for CO 2 and N 2O gas detection at room temperature . Procedia Manuf, 2 ( 2015), pp. 385- 391

[94]

A. Kalyakin, A. Volkov, A. Demin, E. Gorbova, P. Tsiakaras. Determination of nitrous oxide concentration using a solid-electrolyte amperometric sensor. Sens Actuators B Chem, 297 ( 2019), Article 126750

[95]

L.R. Damgaard, C. Kelly, K. Casciotti, B.B. Ward, N.P. Revsbech. Amperometric sensor for nanomolar nitrous oxide analysis. Anal Chim Acta, 1101 ( 2020), pp. 135- 140

[96]

A.G. Ramu, A. Umar, S. Gopi, H. Algadi, H. Albargi, A.A. Ibrahim, et al. . Tetracyanonickelate (II)/KOH/reduced graphene oxide fabricated carbon felt for mediated electron transfer type electrochemical sensor for efficient detection of N 2O gas at room temperature . Environ Res, 201 ( 2021), Article 111591

[97]

P. Silambarasan, I.S. Moon. Enhancing the mediated electrochemical reduction process combined with developed liquid-gas electrochemical flow sensors for sustainable N 2O removal at room temperature . Environ Res, 204 ( 2022), Article 111912

[98]

M.T. Rahman, R.R. Khan, Y. Tian, H. Ibrahim, L. Dong. High-sensitivity and room-temperature nitrous oxide sensor using Au nanoparticles-decorated MoS 2 . IEEE Sens J, 23 ( 17) ( 2023), pp. 18994- 19001

[99]

A. Turlybekuly, M. Sarsembina, A. Mentbayeva, Z. Bakenov, B. Soltabayev. CuO/TiO 2 heterostructure-based sensors for conductometric NO 2 and N 2O gas detection at room temperature . Sens Actuators B Chem, 397 ( 2023), Article 134635

[100]

S. Joshi, S.J. Ippolito, S. Periasamy, Y.M. Sabri, M.V. Sunkara. Efficient heterostructures of Ag@CuO/BaTiO 3 for low-temperature CO 2 gas detection: assessing the role of nanointerfaces during sensing by operando DRIFTS technique . ACS Appl Mater Interfaces, 9 ( 32) ( 2017), pp. 27014- 27026

[101]

J. Herrán, G.G. Mandayo, I. Ayerdi, E. Castaño. Influence of silver as an additive on BaTiO 3-CuO thin film for CO 2 monitoring . Sens Actuators B Chem, 129 ( 1) ( 2008), pp. 386- 390

[102]

K.C. Hsu, T.H. Fang, Y.J. Hsiao, C.A. Chan. Highly response CO 2 gas sensor based on Au-La 2O 3 doped SnO 2 nanofibers . Mater Lett, 261 ( 2020), Article 127144

[103]

D.Y. Kim, H. Kang, N.J. Choi, K.H. Park, H.K. Lee. A carbon dioxide gas sensor based on cobalt oxide containing barium carbonate. Sens Actuators B Chem, 248 ( 2017), pp. 987- 992

[104]

T. Iwata, K. Matsuda, K. Takahashi, K. Sawada. CO 2 sensing characteristics of a La 2O 3/SnO 2 stacked structure with micromachined hotplates . Sensors, 17 ( 9) ( 2017), p. 2156

[105]

D.D. Trung, L.D. Toan, H.S. Hong, T.D. Lam, T. Trung, N. Van Hieu. Selective detection of carbon dioxide using LaOCl-functionalized SnO 2 nanowires for air-quality monitoring . Talanta, 88 ( 2012), pp. 152- 159

[106]

N. Rajesh, J.C. Kannan, T. Krishnakumar, A. Bonavita, S. Leonardi, G. Neri. Microwave irradiated Sn-substituted CdO nanostructures for enhanced CO 2 sensing . Ceram Int, 41 ( 10) ( 2015), pp. 14766- 14772

[107]

D.H. Kim, J.Y. Yoon, H.C. Park, K.H. Kim. CO 2-sensing characteristics of SnO 2 thick film by coating lanthanum oxide . Sens Actuators B Chem, 62 ( 1) ( 2000), pp. 61- 66

[108]

A. Marsal, G. Dezanneau, A. Cornet, J.R. Morante. A new CO 2 gas sensing material . Sens Actuators B Chem, 95 ( 1-3) ( 2003), pp. 266- 270

[109]

R.R. Desai, D. Lakshminarayana, P.B. Patel, C.J. Panchal. Indium sesquitelluride (In 2Te 3) thin film gas sensor for detection of carbon dioxide . Sens Actuators B Chem, 107 ( 2) ( 2005), pp. 523- 527

[110]

Q. Zhu, F. Qiu, Y. Quan, Y. Sun, S. Liu, Z. Zou. Solid-electrolyte NASICON thick film CO 2 sensor prepared on small-volume ceramic tube substrate . Mater Chem Phys, 91 ( 2-3) ( 2005), pp. 338- 342

[111]

J. Herrán, G.G. Mandayo, E. Castaño. Physical behaviour of BaTiO 3-CuO thin-film under carbon dioxide atmospheres . Sens Actuators B Chem, 127 ( 2) ( 2007), pp. 370- 375

[112]

J. Herrán, O. Fernández-González, I. Castro-Hurtado, T. Romero, G. Gª Mandayo, E. Castaño. Photoactivated solid-state gas sensor for carbon dioxide detection at room temperature. Sens Actuators B Chem, 149 ( 2) ( 2010), pp. 368- 372

[113]

M.Y. Kim, Y.N. Choi, J.M. Bae, T.S. Oh. Carbon dioxide sensitivity of La-doped thick film tin oxide gas sensor. Ceram Int, 38 ( Suppl 1) ( 2012), pp. S657-S660

[114]

H.B. Shim, J.H. Kang, J.W. Choi, K.S. Yoo. Characteristics of thick-film CO 2 sensors based on NASICON with Na 2CO 3-CaCO 3 auxiliary phases . J Electroceram, 17 ( 2-4) ( 2006), pp. 971- 974

[115]

P. Matheswaran, R. Sathyamoorthy, K. Asokan. Effect of 130 MeV Au ion irradiation on CO 2 gas sensing properties of In 2Te 3 thin films . Sens Actuators B Chem, 177 ( 2013), pp. 8- 13

[116]

N. Van Hieu, N.D. Khoang, D.D. Trung, L.D. Toan, N. Van Duy, N.D. Hoa. Comparative study on CO 2 and CO sensing performance of LaOCl-coated ZnO nanowires . J Hazard Mater, 244 ( 2013), pp. 209- 216

[117]

Y. Zhu, V. Thangadurai, W. Weppner. Garnet-like solid state electrolyte Li 6BaLa 2Ta 2O 12 based potentiometric CO 2 gas sensor . Sens Actuators B Chem, 176 ( 2013), pp. 284- 289

[118]

X. Wang, H. Qin, L. Sun, J. Hu. CO 2 sensing properties and mechanism of nanocrystalline LaFeO 3 sensor . Sens Actuators B Chem, 188 ( 2013), pp. 965- 971

[119]

P.K. Kannan, R. Saraswathi, J.B.B. Rayappan. CO 2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film . Ceram Int, 40 ( 8) ( 2014), pp. 13115- 13122

[120]

Y. Xiong, G. Zhang, S. Zhang, D. Zeng, C. Xie. Tin oxide thick film by doping rare earth for detecting traces of CO 2: operating in oxygen-free atmosphere . Mater Res Bull, 52 ( 2014), pp. 56- 64

[121]

M. Habib, S.S. Hussain, S. Riaz, S. Naseem. Preparation and characterization of ZnO nanowires and their applications in CO 2 gas sensors . Mater Today Proc, 2 ( 10) ( 2015), pp. 5714- 5719

[122]

R. Dhahri, M. Hjiri, L. El Mir, E. Fazio, F. Neri, F. Barreca, et al. . ZnO: Ca nanopowders with enhanced C O 2 sensing properties . J Phys D Appl Phys, 48 ( 25) ( 2015), Article 255503

[123]

I. Karaduman, M. Demir, D.E. Yıldız, S. Acar. CO 2 gas detection properties of a TiO 2/Al 2O 3 heterostructure under UV light irradiation . Phys Scr, 90 ( 5) ( 2015), Article 055802

[124]

D. Mardare, N. Cornei, C. Mita, D. Florea, A. Stancu, V. Tiron, et al. . Low temperature TiO 2 based gas sensors for CO 2 . Ceram Int, 42 ( 6) ( 2016), pp. 7353- 7359

[125]

M. Ehsani, M.N. Hamidon, A. Toudeshki, M.H.S. Abadi, S. Rezaeian. CO 2 gas sensing properties of screen-printed La 2O 3/SnO 2 thick film . IEEE Sens J, 16 ( 18) ( 2016), pp. 6839- 6845

[126]

C. Abdelmounaïm, Z. Amara, A. Maha, D. Mustapha. Effects of molarity on structural, optical, morphological and CO 2 gas sensing properties of nanostructured copper oxide films deposited by spray pyrolysis . Mater Sci Semicond Process, 43 ( 2016), pp. 214- 221

[127]

W. Zhang, C. Xie, G. Zhang, J. Zhang, S. Zhang, D. Zeng. Porous LaFeO 3/SnO 2 nanocomposite film for CO 2 detection with high sensitivity . Mater Chem Phys, 186 ( 2017), pp. 228- 236

[128]

S. Joshi, C.B.R. Kumar, L.A. Jones, E.L.H. Mayes, S.J. Ippolito, M.V. Sunkara. Modulating interleaved ZnO assembly with CuO nanoleaves for multifunctional performance: perdurable CO 2 gas sensor and visible light catalyst . Inorg Chem Front, 4 ( 11) ( 2017), pp. 1848- 1861

[129]

H.T. Hien, H.T. Giang, N.V. Hieu, T. Trung, C.V. Tuan. Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH 3 gas sensors . Sens Actuators B Chem, 249 ( 2017), pp. 348- 356

[130]

J. Lee, N.J. Choi, H.K. Lee, J. Kim, S.Y. Lim, J.Y. Kwon, et al. . Low power consumption solid electrochemical-type micro CO 2 gas sensor . Sens Actuators B Chem, 248 ( 2017), pp. 957- 960

[131]

N.B. Tanvir, O. Yurchenko, E. Laubender, R. Pohle, O.V. Sicard, G. Urban. Zinc peroxide combustion promoter in preparation of CuO layers for conductometric CO 2 sensing . Sens Actuators B Chem, 257 ( 2018), pp. 1027- 1034

[132]

M. Zhang, H. Chen, H. Wang. Improved sensing properties of CO 2 gas sensor based on Li 3PO 4-Li 2SiO 3 thin film compared with Li 3PO 4 . J Electrochem Soc, 165 ( 5) ( 2018), pp. B167-B173

[133]

M. Struzik, I. Garbayo, R. Pfenninger, J.L.M. Rupp. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater, 30 ( 44) ( 2018), p. 1804098

[134]

P. Ambekar, J. Randhawa. Surface conductivity of binary carbonate as a performance-governing parameter of an electrochemical CO2 gas sensor. Bull Mater Sci, 44 ( 3) ( 2021), p. 235

[135]

A.S. Kalyakin, D.A. Medvedev, A.N. Volkov. Electrochemical sensors based on proton-conducting electrolytes for determination of concentration and diffusion coefficient of CO 2 in inert gases . Chem Eng Sci, 229 ( 2021), Article 116046

[136]

B. Digvijay, J. Amala, S. Aravind, S. Bhuvaneshwari, P. Mohanraj. Cu x O/Cu based electrochemical sensor for the detection of CO2 gas. Indian Chem Eng, 64 ( 5) ( 2022), pp. 479- 493

[137]

X. Duan, Y. Jiang, B. Liu, Z. Duan, Y. Zhang, Z. Yuan, et al. . Enhancing the carbon dioxide sensing performance of LaFeO 3 by Co doping . Sens Actuators B Chem, 402 ( 2024), Article 135136

[138]

K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, et al. . Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B Chem, 160 ( 1) ( 2011), pp. 580- 591

[139]

J.K. Choi, I.S. Hwang, S.J. Kim, J.S. Park, S.S. Park, U. Jeong, et al. . Design of selective gas sensors using electrospun Pd-doped SnO 2 hollow nanofibers . Sens Actuators B Chem, 150 ( 1) ( 2010), pp. 191- 199

[140]

J. Liu, H. Cai, S. Chen, J. Pi, L. Zhao. A review on soil nitrogen sensing technologies: challenges, progress and perspectives. Agriculture, 13 ( 4) ( 2023), p. 743

[141]

L. Burton, K. Jayachandran, S. Bhansali. The, “real-time” revolution for in situ soil nutrient sensing . J Electrochem Soc, 167 ( 3) ( 2020), Article 037569

[142]

A. Cicek, Y. Arslan, D. Trak, F.C. Okay, O.A. Kaya, N. Korozlu, et al. . Gas sensing through evanescent coupling of spoof surface acoustic waves. Sens Actuators B Chem, 288 ( 2019), pp. 259- 265

[143]

P. Kuberský, J. Navrátil, T. Syrový, P. Sedlák, S. Nešpůrek, A. Hamáček. An electrochemical amperometric ethylene sensor with solid polymer electrolyte based on ionic liquid. Sensors (Basel), 21 ( 3) ( 2021), p. 711

[144]

M.A. Aghamalyan. Investigation of carbon dioxide interaction with transition metal dichalcogenides by first principles. J Contemp Phys, 57 ( 2) ( 2022), pp. 166- 169

[145]

F. Bíró, C. Dücső, G.Z. Radnóczi, Z. Baji, M. Takács, I. Bársony. ALD nano-catalyst for micro-calorimetric detection of hydrocarbons. Sens Actuators B Chem, 247 ( 2017), pp. 617- 625

[146]

R. Tabassum, R. Kant. Recent trends in surface plasmon resonance based fiber-optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sens Actuators B Chem, 310 ( 2020), Article 127813

[147]

J.S. Clarke, E.P. Achterberg, D.P. Connelly, U. Schuster, M. Mowlem. Developments in marine pCO 2 measurement technology; towards sustained in situ observations . TrAC Trends Anal Chem, 88 ( 2017), pp. 53- 61

[148]

A.N. Abdullah, K. Kamarudin, S.M. Mamduh, A.H. Adom, Z.H.M. Juffry. Effect of environmental temperature and humidity on different metal oxide gas sensors at various gas concentration levels. IOP Conf Series Mater Sci Eng, 864 ( 1) (2020), Article 012152

[149]

Wei P, Ning Z, Ye S, Sun L, Yang F, Wong KC, et al. Impact analysis of temperature and humidity conditions on electrochemical sensor response in ambient air quality monitoring. Sensors

[150]

Z. Yuan, Q. Zhao, Z. Duan, C. Xie, X. Duan, S. Li, et al. . Ag 2Te nanowires for humidity-resistant trace-level NO 2 detection at room temperature . Sens Actuators B Chem, 363 ( 2022), Article 131790

[151]

Y. Liu, X. Ni, Y. Wu, W. Zhang. Study on effect of temperature and humidity on the CO 2 concentration measurement . IOP Conf Ser Earth Environ Sci, 81 (2017), Article 012083

[152]

S. Hooshmand, P. Kassanos, M. Keshavarz, P. Duru, C.I. Kayalan, İ. Kale, et al. . Wearable nano-based gas sensors for environmental monitoring and encountered challenges in optimization. Sensors, 23 ( 20) ( 2023), p. 8648

[153]

L. Furst, M. Feliciano, L. Frare, G. Igrejas. A portable device for methane measurement using a low-cost semiconductor sensor: development, calibration and environmental applications. Sensors, 21 ( 22) ( 2021), p. 7456

[154]

F. Akhter, M.E.E. Alahi, H.R. Siddiquei, C.P. Gooneratne, S.C. Mukhopadhyay. Graphene oxide (GO) coated impedimetric gas sensor for selective detection of carbon dioxide (CO 2) with temperature and humidity compensation . IEEE Sens J, 21 ( 4) ( 2021), pp. 4241- 4249

[155]

Z. Nagy, D. Rossi, C. Hersberger, S.D. Irigoyen, C. Miller, A. Schlueter. Balancing envelope and heating system parameters for zero emissions retrofit using building sensor data. Appl Energy, 131 ( 2014), pp. 56- 66

[156]

S. Gagnon, E. L’Hérault, M. Lemay, M. Allard. New low-cost automated system of closed chambers to measure greenhouse gas emissions from the tundra. Agric Meteorol, 228 ( 2016), pp. 29- 41

[157]

Liao SH, Tsai ST, Hsia WL. Controlling and monitoring greenhouse gas emissions using CPS and GHG sensors. In:Proceedings of 2023 IEEE 3rd International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB); 2023 Apr 14- 16 ; Taichung, China. Piscataway: IEEE; 2023. p. 68 -70.

AI Summary AI Mindmap
PDF (2941KB)

766

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/