Mesoscale Mechanical Discrete Model for Cementitious Composites with Microfibers

Lei Shen , Linfeng Hu , Giovanni Di Luzio , Maosen Cao , Lei Xu , Gianluca Cusatis

Engineering ››

PDF (8637KB)
Engineering ›› DOI: 10.1016/j.eng.2024.11.017

Mesoscale Mechanical Discrete Model for Cementitious Composites with Microfibers

Author information +
History +
PDF (8637KB)

Abstract

Microfibers (less than 100 µm in diameter) are commonly employed in structural applications to minimize early shrinkage cracking and lower pore pressure during fires. For any application, micro fiber-reinforced concrete (FRC) structural behavior and durability must be estimated using the mechanical constitutive law. Formulating a mechanical constitutive law for FRC presents several difficulties in terms of comprehending the physical principles and employing suitable numerical techniques. A novel model called “Lattice Discrete Particle Model for micro-FRC (LDPM-MicroF)” is presented to simulate the fracture behavior of black micro-FRC. An equivalent fiber diameter coefficient has been defined to balance modeling accuracy and computational cost so that the LDPM-MicroF model can simulate the mechanical responses of engineered cementitious composites. The unimodal variation in tensile strength caused by the increase in microfiber dose is assessed and quantitatively reproduced by LDPM-MicroF predictions. This phenomenon is explained by a combination of mesoscopic mechanisms and the “near-field effect” of the fibers. A small number of microfibers can improve the strength of the matrix and thus slightly the tensile strength. However, when the dosage of microfibers exceeds a certain amount, the tensile strength decreases as the contribution of the fiber bridging force to the strength becomes lower than that of the replaced matrix. This research has provided new insights into the physical comprehension of the mechanical properties of micro-FRC, which has significant implications for the field of study.

Keywords

Microfiber / Fiber reinforced concrete / Unimodal tensile strength variation / Mesoscopic discrete modeling

Cite this article

Download citation ▾
Lei Shen, Linfeng Hu, Giovanni Di Luzio, Maosen Cao, Lei Xu, Gianluca Cusatis. Mesoscale Mechanical Discrete Model for Cementitious Composites with Microfibers. Engineering DOI:10.1016/j.eng.2024.11.017

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement
Lei Shen: Writing - review & editing, Writing - original draft, Validation, Investigation. Linfeng Hu: Writing - original draft, Validation, Methodology, Investigation. Giovanni Di Luzio: Writing - review & editing, Writing - original draft, Validation, Methodology, Investigation. Maosen Cao: Writing - review & editing, Funding acquisition, Conceptualization. Lei Xu: Writing - review & editing, Writing - original draft, Validation, Investigation. Gianluca Cusatis: Writing - review & editing, Supervision, Methodology, Conceptualization.
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgments
This research was supported by the National Natural Science Foundation of China (51908195 and 52250410359), the Young Elite Scientists Sponsorship Program of Jiangsu Provincial Association for Science and Technology (TJ-2023-043), and the Jiangsu International Joint Research and Development Program (BZ2022010). Gianluca Cusatis and Giovanni Di Luzio received no funding for their contribution to this study.
Compliance with ethics guidelines
Lei Shen, Linfeng Hu, Giovanni Di Luzio, Maosen Cao, Lei Xu, and Gianluca Cusatis declare that they have no conflict of interest or financial conflicts to disclose.

References

[1]

N. Banthia, R. Gupta. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement Concr Res, 36 ( 7) ( 2006), pp. 1263- 1267

[2]

K. Aghaee, T. Han, A. Kumar, K.H. Khayat. Mechanism underlying effect of expansive agent and shrinkage reducing admixture on mechanical properties and fiber-matrix bonding of fiber-reinforced mortar. Cement Concr Res, 172 ( 2023), Article 107247

[3]

L. Shen, G. Di Luzio, M. Cao, Q. Ren, X. Ren, M. Jiang, et al. . Insights and theoretical model of thermal conductivity of thermally damaged hybrid steel-fine polypropylene fiber-reinforced concrete. Cement Concr Compos, 138 ( 2023), Article 105001

[4]

L. Shen, X. Yao, G. Di Luzio, M. Jiang, Y. Han. Mix optimization of hybrid steel and polypropylene fiber-reinforced concrete for anti-thermal spalling. J Build Eng, 63 ( 2023), Article 105409

[5]

N.F. Alkayem, L. Shen, A. Mayya, P.G. Asteris, R. Fu, G. Di Luzio, et al. . Prediction of concrete and FRC properties at high temperature using machine and deep learning: a review of recent advances and future perspectives. J Build Eng, 83 ( 2024), Article 108369

[6]

Y. Shen, H. Zhu, Z. Yan, L. Zhou, T. Zhang, Y. Men, et al. . Thermo-mechanical analysis of fire effects on the structural performance of shield tunnels. Tunn Undergr Space Technol, 132 ( 2023), Article 104885

[7]

H. Wang, L. Li, X. Du. A thermo-mechanical coupling model for concrete including damage evolution. Int J Mech Sci, 263 ( 2024), Article 108761

[8]

M.M. Rafi, A. Nadjai. Comparison of numerical behaviors of FRP reinforced concrete beams using three smeared crack models. Mater Struct, 45 ( 1-2) ( 2012), pp. 93- 106

[9]

Di Luzio G, Cedolin L. A nonlocal microplane model for fiber reinforced concrete. In:Proceedings of the 6th International RILEM Symposium on Fibre Reinforced Concretes; 2004 Sep 20; Varenna-Lecco, Italy. Paris: International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM); 2004.

[10]

F.C. Caner, Z. Bažant, R. Wendner. Microplane model M7f for fiber reinforced concrete. Eng Fract Mech, 105 ( 2013), pp. 41- 57

[11]

Z. Smolcic, J. Ozbolt. Meso scale model for fiber-reinforced-concrete: microplane based approach. Comput Concr, 19 ( 4) ( 2017), pp. 375- 385

[12]

T. Tailhan, P. Rossi, D. Daviau-Desnoyers. Probabilistic numerical modelling of cracking in steel fibre reinforced concretes (SRFC) structures. Cement Concr Compos, 55 ( 2015), pp. 315- 321

[13]

H. Zhang, Y.J. Huang, Z.J. Yang, S.L. Xu, X.W. Chen. A discrete-continuum coupled finite element modelling approach for fibre reinforced concrete. Cement Concr Res, 106 ( 2018), pp. 130- 143

[14]

M. Congro, E.C.M. Sanchez, D. Roehl, E. Marangon. Fracture modeling of fiber reinforced concrete in a multiscale approach. Composites Part B, 174 ( 2019), Article 106958

[15]

Z. Wu, W. She, J. Zhang, J. Tang, Y. Cao, B. Da. 3D mesoscale modelling of steel fiber-reinforced aggregate concrete. Int J Mech Sci, 257 ( 2023), Article 108550

[16]

L.A.G. Bitencourt Jr, O.L. Manzoli, T.N. Bittencourt, F.J. Vecchio. Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers. Int J Solids Struct, 159 ( 2019), pp. 171- 190

[17]

M.R. Carvalho, J.A.O. Barros, Y. Zhang, D. Dias-Da-Costa. A computational model for simulation of steel fibre reinforced concrete with explicit fibres and cracks. Comput Methods Appl Mech Eng, 363 ( 2020), Article 112879

[18]

F.K.F. Radtke, A. Simone, L.J. Sluys. A partition of unity finite element method for simulating non-linear debonding and matrix failure in thin fibre composites. Int J Numer Meth Eng, 86 ( 4) ( 2011), pp. 453- 476

[19]

V.M.C.F. Cunha, J.A.O. Barros, J.M. Sena-Cruz. A finite element model with discrete embedded elements for fibre reinforced composites. Comput Struc, 94 ( 95) ( 2012), pp. 22- 33

[20]

J. Zhang, J. Eisenträger, S. Duczek, C. Song. Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Compos Struct, 235 ( 2020), Article 111744

[21]

W.H. Liu, L.W. Zhang. A novel XFEM cohesive fracture framework for modeling nonlocal slip in randomly discrete fiber reinforced cementitious composites. Comput Methods Appl Mech Eng, 355 ( 2019), pp. 1026- 1061

[22]

C. Octávio, D. Dias-Da-Costa, J. Alfaiate, E. Júlio. Modelling the behaviour of steel fibre reinforced concrete using a discrete strong discontinuity approach. Eng Fract Mech, 154 ( 2016), pp. 12- 23

[23]

J. Bolander, S. Choi, S. Nair. Fracture of fiber-reinforced cement composites: effects of fiber dispersion. Int J Fract, 154(1,2):73- 86 ( 2008)

[24]

J. Kang, K. Kim, Y.M. Lim, J.E. Bolander. Modeling of fiber-reinforced cement composites: discrete representation of fiber pullout. Int J Solids Struct, 51 ( 10) ( 2014), pp. 1970- 1979

[25]

J. Kang, J.E. Bolander. Event-based lattice modeling of strain-hardening cementitious composites. Int J Fract, 206 ( 2) ( 2017), pp. 245- 261

[26]

E.A. Schauffert, G. Cusatis. Lattice discrete particle model for fiber-reinforced concrete. I: theory. J Eng Mech, 138 ( 7) ( 2011), pp. 826- 833

[27]

E.A. Schauffert, G. Cusatis, D. Pelessone, J.L. O’Daniel, J.T. Baylot. Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior. J Eng Mech, 138 ( 7) ( 2011), pp. 834- 841

[28]

F. Montero-Chacón, H. Cifuentes, F. Medina. Mesoscale characterization of fracture properties of steel fiber-reinforced concrete using a lattice-particle model. Materials, 10 ( 2) ( 2017), p. 207

[29]

L. Shen, G. Di Luzio, D. Zhu, X. Yao, G. Cusatis, M. Cao, et al. . Mechanical responses of steel fiber-reinforced concrete after exposure to high temperature: experiments and mesoscale discrete modeling. J Eng Mech, 147 ( 11) ( 2021), p. 147

[30]

A. Cibelli, L. Ferrara, G.D. Luzio. Multiscale and multiphysics discrete model of self-healing of matrix and interfacial cracks in fibre reinforced cementitious composites: formulation, implementation and preliminary results. Cement Concr Compos, 148 ( 2024), Article 105465

[31]

P. Smarzewski, D. Barnat-Hunek. Property assessment of hybrid fiber-reinforced ultra-high-performance concrete. Int J Civ Eng, 16 ( 2017), pp. 593- 606

[32]

F. Bencardino, L. Rizzuti, G. Spadea, R.N. Swamy. Experimental evaluation of fiber reinforced concrete fracture properties. Composites Part B, 41 ( 1) ( 2010), pp. 17- 24

[33]

H. Guo, J. Tao, Y. Chen, D. Li, B. Jia, Y. Zhai. Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Constr Build Mater, 224 ( 2019), pp. 504- 514

[34]

A. Behnood, M. Ghandehari. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Saf J, 44 ( 8) ( 2009), pp. 1015- 1022

[35]

K. Wang, W. Wang, Y. Guo, Y. Liu, P. Duan, W. Shi, et al. . Grey modeling study on mechanical properties and pore structure of concrete with different basalt fiber contents based on NMR. J Build Eng, 89 ( 2024), Article 109287

[36]

T. Li, X. Zhang, H. Liu, Z. Fan, C. Chen. Experimental research on mechanical properties of hybrid fiber concrete after high temperature. J Railway Sci Eng, 17 ( 5) ( 2020), pp. 1171- 1177

[37]

J. Eidan, I. Rasoolan, A. Rezaeian, D. Poorveis. Residual mechanical properties of polypropylene fiber-reinforced concrete after heating. Constr Build Mater, 198 ( 2019), pp. 195- 206

[38]

D. Li, D. Niu, Q. Fu, D. Luo. Fractal characteristics of pore structure of hybrid basalt-polypropylene fibre-reinforced concrete. Cement Concr Compos, 109 ( 2020), Article 103555

[39]

B. Liu, D. Li, Q. Fu, L. He, T. Mai. Applicability of fractal models for characterizing pore structure of hybrid basalt-polypropylene fiber-reinforced concrete. Rev Adv Mater Sci, 62 ( 1) ( 2023), p. 20220272

[40]

X. Wang, K. Sun, J. Shao, J. Ma. Study on mechanical and rheological properties of solid waste-based ECC. Buildings, 12 ( 10) ( 2022), p. 1690

[41]

Y. Lyu, M. Troemner, E. Lale, E. Ramyar, W.K. Liu, G. Cusatis. Clustering-enhanced lattice discrete particle modeling for quasi-brittle fracture and fragmentation analysis. Comput Mech, 74 ( 5) ( 2024), pp. 1423- 1437

[42]

S. Khodaie, F. Matta, M. Alnaggar. Discrete meso-scale modeling and simulation of shear response of scaled glass FRP reinforced concrete beams without stirrups. Eng Fract Mech, 216 ( 7) ( 2019), Article 106486

[43]

G. Cusatis, D. Pelessone, A. Mencarelli. Lattice discrete particle model (LDPM) for failure behavior of concrete. I: theory. Cement Concr Compos, 33 ( 9) ( 2011), pp. 881- 890

[44]

G. Cusatis, A. Mencarelli, D. Pelessone, J. Baylot. Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation. Cement Concr Compos, 33 ( 9) ( 2011), pp. 891- 905

[45]

S. Popovics, J. Ujhelyi. Contribution to the concrete strength versus water-cement ratio relationship. J Mater Civ Eng, 20 ( 7) ( 2008), pp. 459- 463

[46]

C. Ceccato, M. Salviato, C. Pellegrino, G. Cusatis. Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape. Int J Solids Struct, 108 ( 2017), pp. 216- 229

[47]

C. Jin, N. Buratti, M. Stacchini, M. Savoia, G. Cusatis. Lattice discrete particle modeling of fiber reinforced concrete: experiments and simulations. Eur J Mech A Solids, 57 ( 2016), pp. 85- 107

[48]

J. Smith, G. Cusatis. Numerical analysis of projectile penetration and perforation of plain and fiber reinforced concrete slabs. Int J Numer Anal Methods Geomech, 41 ( 3) ( 2017), pp. 315- 337

[49]

J. Feng, W. Sun, Z. Liu, C. Chong, X. Wang. An armour-piercing projectile penetration in a double-layered target of ultra-high-performance fiber reinforced concrete and armour steel: experimental and numerical analyses. Mater Des, 102 ( 2016), pp. 131- 141

[50]

E.H. Yang, S. Wang, Y. Yang, V.C. Li. Fiber-bridging constitutive law of engineered cementitious composites. J Adv Concr Technol, 6 ( 1) ( 2008), pp. 181- 193

[51]

Z. Lin, T. Kanda, V.C. Li. On interface property characterization and performance of fiber-reinforced cementitious composites. Concr Sci Eng, 1 ( 1997), pp. 173- 184

[52]

P.D. Maida, E. Radi, C. Sciancalepore, F. Bondioli. Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica. Constr Build Mater, 82 ( 2015), pp. 39- 44

[53]

Z. Lin, V.C. Li. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces. J Mech Phys Solids, 45 ( 5) ( 1997), pp. 763- 787

[54]

F. Laranjeira, C. Molins, A. Aguado. Predicting the pullout response of inclined hooked steel fibers. Cement Concr Res, 40 ( 10) ( 2010), pp. 1471- 1487

[55]

D.Y. Yoo, S. Kim, J.J. Kim, B. Chun. An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers. Constr Build Mater, 206 ( 2019), pp. 46- 61

[56]

Z. Li, F. Li, T.Y.P. Chang, Y.W. Mai. Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers. ACI Mater J, 95 ( 1998), pp. 564- 574

[57]

J. Liu, Y. Jia, J. Wang. Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete. Fibers Polym, 20 ( 9) ( 2019), pp. 1900- 1908

[58]

M. Eik, A. Antonova, J. Puttonen. Phase contrast tomography to study near-field effects of polypropylene fibres on hardened cement paste. Cement Concr Compos, 114 ( 2020), Article 103800

[59]

L. Xu, F. Deng, Y. Chi. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste. Constr Build Mater, 145 ( 2017), pp. 619- 638

[60]

J. He, D. Lei, G. Di Luzio, F. Zhu, P. Bai. Mechanical properties measurement and micro-damage characterization of ITZ in concrete by SEM-DIC method. Opt Lasers Eng, 155 ( 2022), Article 107064

[61]

Chinese standard. ( 2019)

[62]

K. Tosun-Felekoğlu, B. Felekoğlu, R. Ranade, B.Y. Lee, V.C. Li. The role of flaw size and fiber distribution on tensile ductility of PVA-ECC. Composites Part B, 56 ( 2014), pp. 536- 545

[63]

J. Yao, C.K.Y. Leung. Scaling up modeling of strain-hardening cementitious composites based on beam theory: from single fiber to composite. Cement Concr Compos, 108 ( 2020), Article 103534

[64]

B. Zhu, J. Pan, M. Zhang, C.K.Y. Leung. Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction. Cement Concr Compos, 134 ( 2022), Article 104770

AI Summary AI Mindmap
PDF (8637KB)

663

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/