Self-Adaptive Core-Shell Dry Adhesive with a “Live Core” for High-Strength Adhesion under Non-Parallel Contact

Duorui Wang , Hongmiao Tian , Jinyu Zhang , Haoran Liu , Xiangming Li , Chunhui Wang , Xiaoliang Chen , Jinyou Shao

Engineering ››

PDF (3800KB)
Engineering ›› DOI: 10.1016/j.eng.2024.12.035

Self-Adaptive Core-Shell Dry Adhesive with a “Live Core” for High-Strength Adhesion under Non-Parallel Contact

Author information +
History +
PDF (3800KB)

Abstract

Gecko-inspired van der Waals force-based adhesion technology demonstrates significant potential for robotic operations. While superior adhesion is achieved under parallel contact during testing, engineering operations often involve non-parallel contact, weakening adhesion, and compromising task stability and efficiency. Stable attachment under such non-parallel contacts remains challenging. Inspired by the soft muscle and rigid bone in the gecko’s sole, this study proposes a self-adaptive core-shell dry adhesive by embedding a thin, rigid piece into a soft, thick elastomer comprising a top adhesion tip with a mushroom-like geometry for interfacial adhesion based on the van der Waals force and a bottom core-shell configuration for interface stress regulation. Unlike traditional core-shell structures with a fixed “dead core,” the proposed “live core” rotates within the soft shell, mimicking skeletal joints. This enables stress equalization at the interface and facilitates adaptive contact to macroscopic interfacial angle errors. This innovative core-shell configuration demonstrates an adhesion strength 100 times higher than conventional homogeneous structures under non-parallel contact and offers anti-overturning ability by mitigating torsional effects. The proposed strategy can advance the development of gecko-inspired adhesion-based devices and systems.

Keywords

Bioinspired dry adhesives / Self-adaptive / Core-shell / Live core / Anti-overturning

Cite this article

Download citation ▾
Duorui Wang, Hongmiao Tian, Jinyu Zhang, Haoran Liu, Xiangming Li, Chunhui Wang, Xiaoliang Chen, Jinyou Shao. Self-Adaptive Core-Shell Dry Adhesive with a “Live Core” for High-Strength Adhesion under Non-Parallel Contact. Engineering DOI:10.1016/j.eng.2024.12.035

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Duorui Wang: Writing – original draft, Methodology, Data curation. Hongmiao Tian: Supervision. Jinyu Zhang: Data curation. Haoran Liu: Software. Xiangming Li: Validation. Chunhui Wang: Methodology. Xiaoliang Chen: Software. Jinyou Shao: Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation (52025055, 52175546, and 52405624), and the Shaanxi University Youth Innovation Team.

References

[1]

Song S, Drotlef DM, Majidi C, Sitti M.Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.Proc Natl Acad Sci USA 2017; 114(22):E4344-E4353.

[2]

Kizilkan E, Strueben J, Staubitz A, Gorb SN.Bioinspired photocontrollable microstructured transport device.

[3]

Shahsavan H, Salili SM, Jákli A, Zhao B.Thermally active liquid crystal network gripper mimicking the self‐peeling of gecko toe pads.Adv Mater 2017; 29(3):1604021.

[4]

Zhou M, Tian Y, Sameoto D, Zhang X, Meng Y, Wen S.Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface.ACS Appl Mater Interfaces 2013; 5(20):10137-10144.

[5]

Kim T, Park J, Sohn J, Cho D, Jeon S.Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes.ACS Nano 2016; 10(4):4770-4778.

[6]

Bae WG, Kim D, Kwak MK, Ha L, Kang SM, Suh KY.Enhanced skin adhesive patch with modulus‐tunable composite micropillars.Adv Healthc Mater 2013; 2(1):109-113.

[7]

Baik S, Lee HJ, Kim DW, Kim JW, Lee Y, Pang C.Bioinspired adhesive architectures: from skin patch to integrated bioelectronics.Adv Mater 2019; 31(34):1803309.

[8]

Kwak MK, Jeong HE, Suh KY.Rational design and enhanced biocompatibility of a dry adhesive medical skin patch.Adv Mater 2011; 23(34):3949-3953.

[9]

Frost SJ, Mawad D, Higgins MJ, Ruprai H, Kuchel R, Tilley RD, et al.Gecko-inspired chitosan adhesive for tissue repair.NPG Asia Mater 2016; 8(6):e280.

[10]

Menon C, Li Y, Sameoto D, Martens C..

[11]

Hawkes EW, Eason EV, Asbeck AT, Cutkosky MR.The gecko’s toe: scaling directional adhesives for climbing applications.IEEE/ASME Trans Mechatron 2013; 18(2):518-526.

[12]

Hutter M, Remy CD, Höpflinger M, ScarlETH SR..

[13]

Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, et al.Adhesive force of a single gecko foot-hair.Nature 2000; 405(6787):681-685.

[14]

Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, et al.Evidence for van der Waals adhesion in gecko setae.Proc Natl Acad Sci USA 2002; 99(19):12252-12256.

[15]

Arzt E, Gorb S, Spolenak R.From micro to nano contacts in biological attachment devices.Proc Natl Acad Sci USA 2003; 100(19):10603-10606.

[16]

Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, Mcguiggan P, et al.Adhesion and friction in gecko toe attachment and detachment.Proc Natl Acad Sci USA 2006; 103(51):19320-19325.

[17]

Gorb S, Varenberg M, Peressadko A, Tuma J.Biomimetic mushroom-shaped fibrillar adhesive microstructure.J R Soc Interface 2007; 4(13):271-275.

[18]

del A Campo, Greiner C, Arzt E.Contact shape controls adhesion of bioinspired fibrillar surfaces.Langmuir 2007; 23(20):10235-10243.

[19]

Booth JA, Bacca M, McMeeking RM, Foster KL.Benefit of backing‐layer compliance in fibrillar adhesive patches—resistance to peel propagation in the presence of interfacial misalignment.Adv Mater Interfaces 2018; 5(15):1800272.

[20]

Booth JA, Hensel R.Perspective on statistical effects in the adhesion of micropatterned surfaces.Appl Phys Lett 2021; 119:230502.

[21]

Kroner E, Arzt E.Single macropillars as model systems for tilt angle dependent adhesion measurements.Int J Adhes Adhes 2012; 36:32-38.

[22]

Yi H, Kang M, Kwak MK, Jeong HE.Simple and reliable fabrication of bioinspired mushroom-shaped micropillars with precisely controlled tip geometries.ACS Appl Mater Interfaces 2016; 8(34):22671-22678.

[23]

Rong Z, Zhou Y, Chen B, Robertson J, Federle W, Hofmann S, et al.Bio‐inspired hierarchical polymer fiber–carbon nanotube adhesives.Adv Mater 2014; 26(9):1456-1461.

[24]

Davies J, Haq S, Hawke T, Sargent JP.A practical approach to the development of a synthetic gecko tape.Int J Adhes Adhes 2009; 29(4):380-390.

[25]

Bacca M, Booth JA, Turner KL, McMeeking RM.Load sharing in bioinspired fibrillar adhesives with backing layer interactions and interfacial misalignment.J Mech Phys Solids 2016; 96:428-444.

[26]

Persson BNJ, Scaraggi M.Theory of adhesion: role of surface roughness.J Chem Phys 2014; 141(12):124701.

[27]

Hui CY, Glassmaker NJ, Jagota A.How compliance compensates for surface roughness in fibrillar adhesion.J Adhes 2005; 81(7–8):699-721.

[28]

Wang D, Tian H, Liu H, Zhang J, Hu H, Li X, et al.Bioinspired dry adhesives for highly adaptable and stable manipulating irregular objects under vibration.Adv Sci 2023; 10(21):2302512.

[29]

Röhrig M, Thiel M, Worgull M, Hölscher H.3D direct laser writing of nano‐ and microstructured hierarchical gecko‐mimicking surfaces.Small 2012; 8(19):3009-3015.

[30]

Jeong HE, Lee JK, Hong NK, Sang HM, Suh KY.A nontransferring dry adhesive with hierarchical polymer nanohairs.Proc Natl Acad Sci USA 2009; 106(14):5639-5644.

[31]

Brodoceanu D, Bauer CT, Kroner E, Arzt E, Kraus T.Hierarchical bioinspired adhesive surfaces—a review.Bioinspir Biomim 2016; 11(5):051001.

[32]

Minsky HK, Turner KT.Composite Micro-Posts with High Dry Adhesion Strength.ACS Appl Mater Interfaces 2017; 9:18322-18327.

[33]

Lee SH, Hwang I, Kang BS, Jeong HE, Kwak MK.Highly flexible and self-adaptive dry adhesive end-effectors for precision robotics.Soft Matter 2019; 15(29):5827-5834.

[34]

Heepe L, Höft S, Michels J, Gorb SN.Material gradients in fibrillar insect attachment systems: the role of joint-like elements.Soft Matter 2018; 14(34):7026-7033.

[35]

Kim S, Sitti M, Hui CY, Long R, Jagota A.Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays.Appl Phys Lett 2007; 91(16):161905.

[36]

Glassmaker NJ, Jagota A, Hui CY, Kim J.Design of biomimetic fibrillar interfaces: 1.Making contact. J R Soc Interface 2004; 1(1):23-33.

[37]

Tatari M, Mohammadi A Nasab, Turner KT, Shan W.Dynamically tunable dry adhesion via subsurface stiffness modulation.Adv Mater Interfaces 2018; 5(18):1800321.

[38]

Li S, Tian H, Shao J, Liu H, Wang D, Zhang W.Switchable adhesion for nonflat surfaces mimicking geckos’ adhesive structures and toe muscles.ACS Appl Mater Interfaces 2020; 12(35):39745-39755.

[39]

Tan D, Wang X, Liu Q, Shi K, Yang B, Liu S, et al.Switchable adhesion of micropillar adhesive on rough surfaces.Small 2019; 15(50):1904248.

[40]

Song S, Sitti M.Soft grippers using micro‐fibrillar adhesives for transfer printing.Adv Mater 2014; 26(28):4901-4906.

[41]

Wang D, Hu H, Li S, Tian H, Fan W, Li X, et al.Sensing-triggered stiffness-tunable smart adhesives.

[42]

Minsky HK, Turner KT.Composite microposts with high dry adhesion strength.ACS Appl Mater Interfaces 2017; 9(21):18322-18327.

[43]

Minsky HK, Turner KT.Achieving enhanced and tunable adhesion via composite posts.Appl Phys Lett 2015; 106(20):201604.

[44]

Tan D, Luo A, Wang X, Shi Z, Lei Y, Steinhart M, et al.Humidity-modulated core–shell nanopillars for enhancement of gecko-inspired adhesion.ACS Appl Nano Mater 2020; 3(4):3596-3603.

[45]

Bae WG, Kwak MK, Jeong HE, Pang C, Jeong H, Suh KY.Fabrication and analysis of enforced dry adhesives with core–shell micropillars.Soft Matter 2013; 9(5):1422-1427.

[46]

Xue L, Sanz B, Luo A, Turner KT, Wang X, Tan D, et al.Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog.ACS Nano 2017; 11(10):9711-9719.

[47]

Tian H, Wang D, Zhang Y, Jiang Y, Liu T, Li X, et al.Core–shell dry adhesives for rough surfaces via electrically responsive self-growing strategy.Nat Commun 2022; 13(1):7659.

[48]

Kroner E, Paretkar DR, McMeeking RM, Arzt E.Adhesion of flat and structured PDMS samples to spherical and flat probes: a comparative study.J Adhes 2011; 87(5):447-465.

[49]

Cadirov N, Booth JA, Turner KL, Israelachvili JN.Influence of humidity on grip and release adhesion mechanisms for gecko-inspired microfibrillar surfaces.ACS Appl Mater Interfaces 2017; 9(16):14497-14505.

[50]

Buhl S, Greiner C, del A Campo, Arzt E.Humidity influence on the adhesion of biomimetic fibrillar surfaces.Int J Mater Res 2009; 100(8):1119-1126.

[51]

Kim TW, Bhushan B.The adhesion model considering capillarity for gecko attachment system.J R Soc Interface 2008; 5(20):319-327.

[52]

Kendall K.The adhesion and surface energy of elastic solids.J Phys D Appl Phys 1971; 4(8):1186.

[53]

Carbone G, Pierro E, Gorb SN.Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces.Soft Matter 2011; 7(12):5545-5552.

[54]

Gorb SN, Varenberg M.Mushroom-shaped geometry of contact elements in biological adhesive systems.J Adhes Sci Technol 2007; 21(12–13):1175-1183.

AI Summary AI Mindmap
PDF (3800KB)

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/