A Wideband Amplifying and Filtering Reconfigurable Intelligent Surface for Wireless Relay

Lijie Wu , Qun Yan Zhou , Jun Yan Dai , Siran Wang , Junwei Zhang , Zhen Jie Qi , Hanqing Yang , Ruizhe Jiang , Zheng Xing Wang , Huidong Li , Zhen Zhang , Jiang Luo , Qiang Cheng , Tie Jun Cui

Engineering ››

PDF (3190KB)
Engineering ›› DOI: 10.1016/j.eng.2025.06.015
review-article

A Wideband Amplifying and Filtering Reconfigurable Intelligent Surface for Wireless Relay

Author information +
History +
PDF (3190KB)

Abstract

Programmable metasurfaces have garnered significant attention due to their exceptional ability to manipulate electromagnetic (EM) waves in real time, propelling the emergence of reconfigurable intelligent surfaces (RISs) as a transformative advancement in wireless communication for controlling signal propagation and coverage. However, conventional RISs often suffer from a limited operational range and spectral interference, hindering their practical deployment in wireless relay and communication systems. To overcome this limitation, we propose an amplifying and filtering RIS (AF-RIS) to enhance the in-band signal energy and filter the out-of-band signal of the incident EM waves, thereby achieving RIS array miniaturization and improved anti-interference capability. Furthermore, each AF-RIS element features 2-bit phase control, significantly improving the array’s beamforming performance. A meticulously designed 4 × 8 AF-RIS array is presented by integrating the power dividing and combining networks, which substantially reduces the number of amplifiers and filters, drastically decreasing the hardware costs and power consumption. The experimental results demonstrate the powerful capabilities of the AF-RIS in beam-steering, frequency selectivity, and signal amplification. Thus, the proposed AF-RIS offers significant potential for critical wireless relay applications by improving frequency selectivity, expanding signal coverage, and minimizing hardware size.

Graphical abstract

Keywords

Reconfigurable intelligent surface / Programmable metasurface / Wireless relay / Signal filtering / Signal energy enhancement

Cite this article

Download citation ▾
Lijie Wu, Qun Yan Zhou, Jun Yan Dai, Siran Wang, Junwei Zhang, Zhen Jie Qi, Hanqing Yang, Ruizhe Jiang, Zheng Xing Wang, Huidong Li, Zhen Zhang, Jiang Luo, Qiang Cheng, Tie Jun Cui. A Wideband Amplifying and Filtering Reconfigurable Intelligent Surface for Wireless Relay. Engineering DOI:10.1016/j.eng.2025.06.015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alsabah M, Naser M, Mahmmod B, Abdulhussain S, Eissa M, Al-Baidhani A, et al.6G wireless communications networks: a comprehensive survey.IEEE Access 2021; 9:148191-148243.

[2]

Cui M, Wu Z, Lu Y, Wei X, Dai L.Near-field MIMO communications for 6G: fundamentals, challenges, potentials, and future directions.IEEE Commun Mag 2023; 61(1):40-46.

[3]

Wang C, You X, Gao X, Zhu X, Li Z, Zhang C, et al.On the road to 6G: visions, requirements, key technologies, and testbeds.IEEE Commun Surv Tutor 2023; 25(2):905-974.

[4]

Shafie A, Yang N, Han C, Jornet J, Juntti M, Kürner T.Terahertz communications for 6G and beyond wireless networks: challenges, key advancements, and opportunities.IEEE Netw 2023; 37(3):162-169.

[5]

Zhou D, Sheng M, Li J, Han Z.Aerospace integrated networks innovation for empowering 6G: a survey and future challenges.IEEE Commun Surv Tutor 2023; 25(2):975-1019.

[6]

Zhang P, Chen N, Shen S, Yu S, Kumar N, Hsu C.AI-enabled space–air–ground integrated networks: management and optimization.IEEE Netw 2024; 38(2):186-192.

[7]

Qadir Z, Le K, Saeed N, Munawar H.Towards 6G Internet of Things: recent advances, use cases, and open challenges.ICT Express 2023; 9(3):296-312.

[8]

Malik U, Javed M, Zeadally S, Islam S.Energy-efficient fog computing for 6G-enabled massive IoT: recent trends and future opportunities.IEEE Internet Things J 2022; 9(16):14572-14594.

[9]

Nguyen D, Ding M, Pathirana P, Seneviratne A, Li J, Niyato D, et al.6G Internet of Things: a comprehensive survey.IEEE Internet Things J 2022; 9(1):359-383.

[10]

Khalid W, Rehman MAU, Van TChien, Kaleem Z, Lee H, Yu H.Reconfigurable intelligent surface for physical layer security in 6G–IoT: designs, issues, and advances.IEEE Internet Things J 2024; 11(2):3599-3613.

[11]

Akyildiz I, Jornet J.Realizing ultra-massive MIMO (1024 × 1024) communication in the (0.06–10) terahertz band.Nano Commun Netw 2016; 8:46-54.

[12]

Liao A, Gao Z, Wang D, Wang H, Yin H, Ng D, et al.Terahertz ultra-massive MIMO-based aeronautical communications in space–air–ground integrated networks.IEEE J Sel Areas Commun 2021; 39(6):1741-1767.

[13]

Yuan Y, He R, Ai B, Ma Z, Miao Y, Niu Y, et al.A 3D geometry-based THz channel model for 6G ultra massive MIMO systems.IEEE Trans Veh Technol 2022; 71(3):2251-2266.

[14]

Deng R, Zhang Y, Zhang H, Di B, Zhang H, Poor H, et al.Reconfigurable holographic surfaces for ultra-massive MIMO in 6G: practical design, optimization and implementation.IEEE J Sel Areas Commun 2023; 41(8):2367-2379.

[15]

Zeng S, Di B, Zhang H, Gao J, Yue S, Hu X, et al.RIS-based IMT-2030 testbed for mmWave multi-stream ultra-massive MIMO communications.IEEE Wirel Commun 2024; 31(3):375-382.

[16]

Rankov B, Wittneben A.Spectral efficient protocols for half-duplex fading relay channels.IEEE J Sel Areas Commun 2007; 25(2):379-389.

[17]

Lu W, Di MRenzo.Stochastic geometry modeling and system-level analysis & optimization of relay-aided downlink cellular networks.IEEE Trans Commun 2015; 63(11):4063-4085.

[18]

Rappaport T, Xing Y, Kanhere O, Ju S, Madanayake A, Mandal S, et al.Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond.IEEE Access 2019; 7:78729-78757.

[19]

Di M Renzo, Ntontin K, Song J, Danufane FH, Qian X, Lazarakis F, et al.Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison.IEEE Open J Commun Soc 2020; 1:798-807.

[20]

Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q.Coding metamaterials, digital metamaterials and programmable metamaterials.Light Sci Appl 2014; 3(10):e218.

[21]

Cui TJ, Liu S, Zhang L.Information metamaterials and metasurfaces.J Mater Chem C 2017; 5(15):3644-3668.

[22]

Dai JY, Zhao J, Cheng Q, Cui TJ.Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface.Light Sci Appl 2018; 7(1):90.

[23]

Zhang L, Wu R, Bai G, Wu H, Ma Q, Chen X, et al.Transmission–reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves.Adv Funct Mater 2018; 28(33):1802205.

[24]

Zhang L, Chen X, Shao R, Dai J, Cheng Q, Castaldi G, et al.Breaking reciprocity with space–time-coding digital metasurfaces.Adv Mater 2019; 31(41):1970295.

[25]

Dai JY, Yang J, Tang W, Chen MZ, Ke JC, Cheng Q, et al.Arbitrary manipulations of dual harmonics and their wave behaviors based on space–time-coding digital metasurface.Appl Phys Rev 2020; 7(4):041408.

[26]

Zhang XG, Sun YL, Yu Q, Cheng Q, Jiang WX, Qiu CW, et al.Smart Doppler cloak operating in broad band and full polarizations.Adv Mater 2021; 33(17):2007966.

[27]

Wang S, Dai J, Zhou Q, Ke J, Cheng Q, Cui T.Manipulations of multi-frequency waves and signals via multi-partition asynchronous space–time-coding digital metasurface.Nat Commun 2023; 14:5377.

[28]

Liu W, Wang SR, Dai JY, Zhang L, Chen Q, Cheng Q, et al.Arbitrarily rotating polarization direction and manipulating phases in linear and nonlinear ways using programmable metasurface.Light Sci Appl 2024; 13:172.

[29]

Wu Q, Zhang R.Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network.IEEE Commun Mag 2020; 58(1):106-112.

[30]

Di M Renzo, Zappone A, Debbah M, Alouini MS, Yuen C, de JRosny, et al.Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead.IEEE J Sel Areas Commun 2020; 38(11):2450-2525.

[31]

Liu Y, Liu X, Mu X, Hou T, Xu J, Di MRenzo, et al.Reconfigurable intelligent surfaces: principles and opportunities.IEEE Commun Surv Tutor 2021; 23(3):1546-1577.

[32]

Basar E, Di MRenzo, De JRosny, Debbah M, Alouini MS, Zhang R.Wireless communications through reconfigurable intelligent surfaces.IEEE Access 2019; 7:116753-116773.

[33]

Cui TJ, Liu S, Bai GD, Ma Q.Direct transmission of digital message via programmable coding metasurface.Research 2019; 2019:2584509.

[34]

Dai J, Tang W, Zhao J, Li X, Cheng Q, Ke J, et al.Wireless communications through a simplified architecture based on time-domain digital coding metasurface.Adv Mater Technol 2019; 4(7):1900044.

[35]

Tang W, Chen MZ, Dai JY, Zeng Y, Zhao X, Jin S, et al.Wireless communications with programmable metasurface: new paradigms, opportunities, and challenges on transceiver design.IEEE Wirel Commun 2020; 27(2):180-187.

[36]

Dai JY, Tang W, Yang LX, Li X, Chen MZ, Ke JC, et al.Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface.IEEE Trans Antennas Propag 2020; 68(3):1618-1627.

[37]

Zhang L, Chen M, Tang W, Dai J, Miao L, Zhou X, et al.A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces.Nat Electron 2021; 4(3):218-227.

[38]

Huang C, Zhang J, Cheng Q, Cui T.Polarization modulation for wireless communications based on metasurfaces.Adv Funct Mater 2021; 31(36):2103379.

[39]

Chen MZ, Tang W, Dai JY, Ke JC, Zhang L, Zhang C, et al.Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface.Nat Sci Rev 2022; 9(1):nwab134.

[40]

Liu Y, Wang Y, Fu X, Shi L, Yang F, Luo J, et al.Toward sub-terahertz: space–time coding metasurface transmitter for wideband wireless communications.Adv Sci 2023; 10(29):2304278.

[41]

Yildirim I, Kilinc F, Basar E, Alexandropoulos G.Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension.IEEE Commun Lett 2021; 25(5):1692-1696.

[42]

Kan T, Chang R, Chien F, Chen B, Poor H.Hybrid relay and reconfigurable intelligent surface assisted multiuser MISO systems.IEEE Trans Veh Technol 2023; 72(6):7653-7668.

[43]

Cheng Y, Li KH, Liu Y, Teh KC, Vincent PH.Downlink and uplink intelligent reflecting surface aided networks: NOMA and OMA.IEEE Trans Wirel Commun 2021; 20(6):3988-4000.

[44]

Arzykulov S, Nauryzbayev G, Celik A, Eltawil A.RIS-assisted full-duplex relay systems.IEEE Syst J 2022; 16(4):5729-5740.

[45]

Zhu F, Wang X, Huang C, Yang Z, Chen X, Al AHammadi, et al.Robust beamforming for RIS-aided communications: gradient-based manifold meta learning.IEEE Trans Wirel Commun 2024; 23(11):15945-15956.

[46]

Wang X, Zhu F, Zhou Q, Yu Q, Huang C, Alhammadi A, et al.Energy-efficient beamforming for RISs-aided communications: gradient based meta learning.In: Proceedings of IEEEInternational Conference on Communications, 2024 Jun 9–13; Denver, C O, USA. New York City: IEE E; 2024. p. 3464–9.

[47]

Wang W, Zhang W.Joint beam training and positioning for intelligent reflecting surfaces assisted millimeter wave communications.IEEE Trans Wirel Commun 2021; 20(10):6282-6297.

[48]

Wang J, Liang Y, Joung J, Yuan X, Wang X.Joint beamforming and reconfigurable intelligent surface design for two-way relay networks.IEEE Trans Commun 2021; 69(8):5620-5633.

[49]

Obeed M, Chaaban A.Joint beamforming design for multiuser miso downlink aided by a reconfigurable intelligent surface and a relay.IEEE Trans Wirel Commun 2022; 21(10):8216-8229.

[50]

.Top 10 emerging technologies of 2024.Report. Geneva: World Economic Forum; 2024.

[51]

Ma Y, Li M, Liu Y, Wu Q, Liu Q.Optimization for reflection and transmission dual-functional active RIS-assisted systems.IEEE Trans Commun 2023; 71(9):5534-5548.

[52]

Liu K, Zhang Z, Dai L, Xu S, Yang F.Active reconfigurable intelligent surface: fully-connected or sub-connected?.IEEE Commun Lett 2022; 26(1):167-171.

[53]

Long R, Liang YC, Pei Y, Larsson EG.Active reconfigurable intelligent surface-aided wireless communications.IEEE Trans Wirel Commun 2021; 20(8):4692.

[54]

Ma Y, Li M, Liu Y, Wu Q, Liu Q.Active reconfigurable intelligent surface for energy efficiency in MU-MISO systems.IEEE Trans Veh Technol 2023; 72(3):4103-4107.

[55]

Zhang Z, Dai L, Chen X, Liu C, Yang F, Schober R, et al.Active RIS vs. passive RIS: which will prevail in 6G?.IEEE Trans Commun 2023; 71(3):1707-1725.

[56]

Bialkowski M, Robinson A, Song H.Design, development, and testing of X-band amplifying reflectarrays.IEEE Trans Antennas Propag 2002; 50(8):1065-1076.

[57]

Kishor K, Hum S.An amplifying reconfigurable reflectarray antenna.IEEE Trans Antennas Propag 2012; 60(1):197-205.

[58]

Yang X, Xu S, Yang F, Li M, Fang H, Hou Y.A distributed power-amplifying reflectarray antenna for EIRP boost applications.IEEE Antennas Wirel Propag Lett 2017; 16:2742-2745.

[59]

Wang X, Han J, Tian S, Xia D, Li L, Cui TJ.Amplification and manipulation of nonlinear electromagnetic waves and enhanced nonreciprocity using transmissive space–time‐coding metasurface.Adv Sci 2022; 9(11):2105960.

[60]

Ma Q, Chen L, Jing HB, Hong QR, Cui HY, Liu Y, et al.Controllable and programmable nonreciprocity based on detachable digital coding metasurface.Adv Opt Mater 2019; 7(24):1901285.

[61]

Taravati S, Khan B, Gupta S, Achouri K, Caloz C.Nonreciprocal nongyrotropic magnetless metasurface.IEEE Trans Antennas Propag 2017; 65(7):3589-3597.

[62]

Qiu T, Jia Y, Wang J, Cheng Q, Qu S.Controllable reflection-enhancement metasurfaces via amplification excitation of transistor circuit.IEEE Trans Antennas Propag 2021; 69(3):1477-1482.

[63]

Taravati S, Eleftheriades G.Full-duplex reflective beamsteering metasurface featuring magnetless nonreciprocal amplification.Nat Commun 2021; 12:4414.

[64]

Yang J, Yang W, Qu K, Zhao J, Jiang T, Chen K, et al.Active polarization-converting metasurface with electrically controlled magnitude amplification.Opt Express 2023; 31(18):28979.

[65]

Wu L, Lou K, Ke J, Liang J, Luo Z, Dai JY, et al.A wideband amplifying reconfigurable intelligent surface.IEEE Trans Antennas Propag 2022; 70(11):10623-10631.

[66]

Wang H, Li Y, Wang S, Shen J, Li H, Jin S, et al.High-efficiency spatial-wave frequency multiplication using strongly nonlinear metasurface.Adv Sci 2021; 8(18):2101212.

[67]

Wang X, Han JQ, Li GX, Xia DX, Chang MY, Ma XJ, et al.High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface.Nat Commun 2023; 14:6002.

[68]

Liu C, Ma Q, Luo Z, Hong Q, Xiao Q, Zhang H, et al.A programmable diffractive deep neural network based on a digital-coding metasurface array.Nat Electron 2022; 5(2):113-122.

[69]

Zhao Y, Lv X.Network coexistence analysis of RIS-assisted wireless communications.IEEE Access 2022; 10:63442-63454.

[70]

Zhao Y.Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions.Front Inf Technol Electron Eng 2023; 24(12):1669-1688.

[71]

Liang JC, Zhang L, Luo Z, Jiang RZ, Cheng ZW, Wang SR, et al.A filtering reconfigurable intelligent surface for interference-free wireless communications.Nat Commun 2024; 15:3838.

[72]

Hu Q, Yang H, Zeng X, Rao Y, Zhang X.Methodology and design of absorptive filtering reconfigurable intelligent surfaces.IEEE Trans Antennas Propag 2024; 72(6):5301-5306.

[73]

Tang W, Chen MZ, Chen X, Dai JY, Han Y, Di MRenzo, et al.Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement.IEEE Trans Wirel Commun 2021; 20(1):421-439.

AI Summary AI Mindmap
PDF (3190KB)

263

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/