Single-Seed Casting Large-Size Monocrystalline Silicon for High-Efficiency and Low-Cost Solar Cells
Received date: 18 Jun 2015
Accepted date: 10 Sep 2015
Published date: 30 Sep 2015
To grow high-quality and large-size monocrystal-line silicon at low cost, we proposed a single-seed casting technique. To realize this technique, two challenges—polycrystalline nucleation on the crucible wall and dislocation multiplication inside the crystal—needed to be addressed. Numerical analysis was used to develop solutions for these challenges. Based on an optimized furnace structure and operating conditions from numerical analysis, experiments were performed to grow monocrystalline silicon using the single-seed casting technique. The results revealed that this technique is highly superior to the popular high-performance multicrystalline and multiseed casting mono-like techniques.
Bing Gao , Satoshi Nakano , Hirofumi Harada , Yoshiji Miyamura , Takashi Sekiguchi , Koichi Kakimoto . Single-Seed Casting Large-Size Monocrystalline Silicon for High-Efficiency and Low-Cost Solar Cells[J]. Engineering, 2015 , 1(3) : 378 -383 . DOI: 10.15302/J-ENG-2015032
1 |
Fraunhofer Institute for Solar Energy Systems ISE. Photovoltaic report. Freiburg: Fraunhofer ISE, 2014: 3–4
|
2 |
N. Stoddard,
|
3 |
N. Stoddard, B. Wu, L. Maisano, R. Russell, R. Clark, J. M. Fernandez. The leading edge of silicon casting technology and BP Solar’s Mono2 wafers. In: B. L. Sopori,
|
4 |
N. Stoddard,
|
5 |
D. Zhu, L. Ming, M. Huang, Z. Zhang, X. Huang. Seed-assisted growth of high-quality multi-crystalline silicon in directional solidification. J. Cryst. Growth, 2014, 386: 52–56
|
6 |
X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, D. Yang. Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells. Sol. Energ. Mat. Sol. C., 2012, 101: 95–101
|
7 |
K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Control of grain boundary propagation in mono-like Si: Utilization of functional grain boundaries. Appl. Phys. Express, 2013, 6(2): 025505
|
8 |
K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Mono-like silicon growth using functional grain boundaries to limit area of multicrystalline grains. J. Photovolt., 2014, 4(1): 84–87
|
9 |
M. G. Tsoutsouva,
|
10 |
G. Stokkan, Y. Hu, Ø. Mjøs, M. Juel. Study of evolution of dislocation clusters in high performance multicrystalline silicon. Sol. Energ. Mat. Sol. C., 2014, 130: 679–685
|
11 |
Y. M. Yang, A. Yu, B. Hsu, W. C. Hsu, A. Yang, C. W. Lan. Development of high-performance multicrystalline silicon for photovoltaic industry. Prog. Photovolt. Res. Appl., 2015, 23(3): 340–351
|
12 |
B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto. Dislocation analysis of a new method for growing large-size crystals of monocrystalline silicon using a seed casting technique. Cryst. Growth Des., 2012, 12(12): 6144–6150
|
13 |
B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto. Reduction of polycrystalline grains region near the crucible wall during seeded growth of monocrystalline silicon in a unidirectional solidification furnace. J. Cryst. Growth, 2012, 352(1): 47–52
|
14 |
V. R. Voller, M. Cross, N. C. Markatos. An ent<?Pub Caret?>halpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng., 1987, 24(1): 271–284
|
15 |
J. P. Garandet. On the thermal stresses in vertical gradient freeze furnaces. J. Cryst. Growth, 1989, 96(3): 680–684
|
16 |
Y. Miyamura,
|
17 |
B. Gao, S. Nakano, K. Kakimoto. Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace. J. Cryst. Growth, 2011, 318(1): 255–258
|
/
〈 |
|
〉 |