Fig. 1 shows the overall 3D view of CLEAR-I. The reactor core consists of fuel, shielding, and inner-to-outer reflector assembly in the radial direction. In addition, 8 control rods are configured at specified positions, shown in Fig. 2. Each fuel assembly (FA) is surrounded by a hexagon wrapper containing 61 pins. Each pin is circular in its horizontal section and fixed with helical wire-wrap. To ensure the FA stability, the padding is set in the neighbor FAs, and is weight-counted in vertical. The core is loaded with 86 FAs, and the active zone of the core is 800 mm in height and 1230 mm in diameter. The reactor core is designed in both subcritical and critical conditions, shown in Fig. 2. The initial
keff in critical mode at the beginning of life (BOL) is 1.016; after 10 years of operation, it will decrease to 1.008, with the average fuel burnup being 10.195 MW
d per kilogram U. The neutronics analysis of the core is performed with the Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC) [
14]. During operation, results show that the reactivity coefficients, such as the temperature coefficients and expansion coefficients, are negative. The reactivity is controlled with two independent control systems during operation, both of which satisfy the stuck rod criterion and ensure that the core can be shut down safely.