Introduction
Tantalum-based narrow bandgap photocatalysts
Basic properties of tantalum (oxy)nitrides
Tab.1 Representative tantalum (oxy)nitride-based photocatalysts [49]. |
Compound | Crystal structure | Absorption edge (nm) | Bandgap (eV) |
---|---|---|---|
Ta3N5 | Anosovite | 600 | 2.1 |
TaON | Baddelyite | 510 | 2.4 |
LaTaON2 | Perovskite | 640 | 1.9 |
CaTaO2N | Perovskite | 510 | 2.4 |
SrTaO2N | Perovskite | 570 | 2.2 |
BaTaO2N | Perovskite | 660 | 1.9 |
Synthesis of tantalum (oxy)nitrides
Fig.5 UV-Vis light absorption spectra of Ta3N5 prepared at 850 °C, 900 °C, 950 °C, and 1000 °C in NH3 gas collected in different mode: (a) transmission mode and (b) integrating sphere. Pictures inset in (b) show the gray tint in the sample treated at 950 °C and 1000 °C [62]. (Copyright 2014, American Chemical Society) |
Fig.7 Scanning electron microscope (SEM) images of Ta3N5 prepared by various flux-assisted nitridation methods. (a) Ta2O5-NaCl (850 °C for 10 h); (b) Ta3N5-NaCl (850 °C for 10 h); (c) TaCl5-NaCl (800 °C for 10 h); and (d) TaCl5-Zn (800 °C for 10 h) [69]. (Copyright 2011, American Chemical Society) |
Strategies for improving water-splitting activity
Doping
Fig.8 (a) Time courses for photocatalytic H2 production on Ta3N5 variants separately replaced with different amounts of Mg, Zr, or Mg+Zr: (i) undoped; (ii) 25 at% Mg; (iii) 40 at% Mg; (iv) 25 at% Zr; (v) 40 at% Zr; (vi) 25 at% Mg+Zr; (vii) 40 at% Mg+Zr. (b) Band structure diagram of Ta3N5 and Ta3N5:Mg+ Zr [81]. Efb: flat band energy. (Copyright 2015, American Chemical Society) |
Fig.9 (a) (F(R∞)hν)1/2 versus the energy curve of LaMgxTa1–xO1+3xN2–3x derived from UV-Vis light diffuse reflectance spectra. (b) Band levels of LaMgxTa1–xO1+3xN2–3x (x = 0 and 0.33) obtained by PESA and theoretical calculations (CAL) [82]. (Copyright 2016, The Royal Society of Chemistry) |
Morphological control
Fig.10 (a) Transmission electron microscope (TEM) image of mesoporous Ta3N5 [84] (Copyright 2010, American Chemical Society); (b) SEM image of Ta3N5 nanoparticles prepared using the reverse homogeneous precipitation (RHP) method [85] (Copyright 2009, Elsevier); (c) TEM image of Ta3N5 particles prepared by adopting mesoporous C3N4 as the template [86] (Copyright 2010, The Royal Society of Chemistry); (d) SEM image of macroporous Ta3N5 [87] (Copyright 2012, Wiley-VCH). |
Fig.11 SEM images of: (a–d) u-Ta2O5, (e) γ/β-TaON(u), and (f) u-Ta3N5. (g) Scheme of the formation of hollow urchin-like u-Ta2O5 hierarchical nanostructures and the subsequent thermal nitridation, successively forming γ-TaON, β-TaON, and u-Ta3N5 [90]. (Copyright 2013, The Royal Society of Chemistry) |
Fig.12 (a, c) SEM and (b, d) TEM images (top right insets: electron diffraction) of (a, b) Ta3N5 nanoplates and (c, d) Ta3N5 octahedra. (e) Diffuse reflectance spectra and (f) time-dependent H2 evolution reaction of different Ta3N5 samples [92]. (Copyright 2016, The Royal Society of Chemistry) |
Surface modification
Fig.13 (a) UV-Vis diffuse reflectance spectra (inset: Tauc plot) and (b) band position of CaTaO2N as determined by calculation. Time courses of gas evolution during water splitting on titanium-oxyhydroxide-deposited RhCrOy/CaTaO2N under (c) UV+ Visible light (λ≥300 nm) and (d) visible light (λ≥420 nm) [51]. (Copyright 2015, The Royal Society of Chemistry) |
Fig.14 Field emission scanning electron microscope (FESEM) images of (a) Pt/Ta3N5 and (b) Pt/MgO(in)-Ta3N5 [97] (Copyright 2016, Elsevier); (c) time course of visible-light H2 evolution with 0.5 wt% Pt/Ba(0.3)-Ta3N5; (d) relative band positions of the Ta3N5/BaTaO2N heterostructure [98] (Copyright 2017, The Royal Society of Chemistry). |
Co-catalysts and heterostructures
Fig.15 (a) Scheme illustration of two separated co-catalysts used to decorate Ta3N5 hollow spheres to create an effective photocatalyst for water splitting. (b,c) SEM images of (b) Ta3N5/Pt/SiO2 spheres and (c) Ta3N5/Pt hollow spheres. The scale bar is 500 nm. (d) Time course of H2 evolution on Ta3N5 photocatalysts with and without spatially separated co-catalysts [40]. TPS: Ta3N5/Pt/SiO2; TS: Ta3N5/SiO2. (Copyright 2013, Wiley-VCH) |
Fig.17 (a) A TEM image of Au nanoparticles; (b) high-angle annular dark-field scanning transmission electron microscope (STEM) image of nano Au/Ta3N5; (c) the UV-Vis diffuse reflectance spectra of nano Au/Ta3N5; (d) the time course of H2 generation for the nano Au/Ta3N5 composites [119]. (Copyright 2014, The Royal Society of Chemistry) |
Fig.19 (a) Scheme of the Z-scheme overall water splitting on a RuO2/TaON and Pt/TaON mixture with an /I– redox mediator [ 122] (Copyright 2008, The CSJ Journals); (b) Scheme of two-step water splitting on a Pt/ZrO2/TaON and Ir/R-TiO2/Ta3N5 mixture with an /I– redox mediator [ 123] (Copyright 2010, American Chemical Society). |
Performance of tantalum (oxy)nitride-based photocatalysts
Tab.2 Tantalum (oxy)nitride-based photocatalysts for water splitting. |
Photocatalysts | Morphology | Co-catalyst (Amount, wt%) | Light source | Reaction solution | Activity (µmol·(g·h)−1) | Ref. | |
---|---|---|---|---|---|---|---|
H2 | O2 | ||||||
Ta3N5 | Microparticles | Pt (3.0) | 300 W Xe (λ>420 nm) | Methanol | 9.0 | NA | [43] |
Ta3N5 | Nanoparticles | Pt (0.5) | 300 W Xe (λ>420 nm) | Methanol | 10.5 | NA | [85] |
Ta3N5 | Mesoporous | Pt (3.0) | 300 W Xe (λ>420 nm) | Methanol | 17.0 | NA | [84] |
Ta3N5 | Microparticles | Pt (0.5) | 300 W Xe (λ>420 nm) | Methanol | 110.0 | NA | [65] |
Ta3N5 | Nanoparticles | Pt (0.5) | 450 W Hg (λ>400 nm) | Methanol | 136.0 | NA | [86] |
Ta3N5 | Ordered porous | Pt (3.0) | 300 W Xe (λ>420 nm) | Methanol | 18.0 | NA | [91] |
Ta3N5 | Microparticles | Pt (0.5) | 70 W halide (λ>380 nm) | Methanol | 72.0 | NA | [64] |
Ta3N5 | Hollow structure | Pt (0.1) | 300 W Xe (λ>420 nm) | Methanol | 425.0 | NA | [90] |
Ta3N5 | Hollow spheres | Pt (1) IrO2 (0.025) | 300 W Xe (λ>420 nm) | Methanol | 206.3 | NA | [40] |
Ta3N5 | Nanoplates | Pt (3.0) | 300 W Xe (λ>400 nm) | Methanol | 26.5 | NA | [92] |
Ta3N5 | Macroporous | NA | 300 W Xe | Methanol | 82.5 | NA | [87] |
Mg-Ta3N5 | Microparticles | Pt (0.3) | 300 W Xe (λ>420 nm) | Methanol | 70.4 | NA | [81] |
Zr-Ta3N5 | Microparticles | Pt (0.3) | 300 W Xe (λ>420 nm) | Methanol | 80.6 | NA | [81] |
(Mg+ Zr)-Ta3N5 | Microparticles | Pt (0.3) | 300 W Xe (λ>420 nm) | Methanol | 60.8 | NA | [81] |
SiO2/Ta3N5 | Core/shell | Pt (3.0) | 300 W Xe (λ>420 nm) | Methanol | 83.3 | NA | [118] |
ZrO2/Ta3N5 | Microparticles | Pt (0.5) | 300 W Xe (λ>420 nm) | Methanol | 27.4 | NA | [96] |
MgO/Ta3N5 | Microparticles | Pt (2.0) | 300 W Xe (λ>420 nm) | Methanol | 149.3 | NA | [97] |
BaTaO2N/Ta3N5 | Microparticles | Pt (0.5) | 300 W Xe (λ>420 nm) | Methanol | 201.3 | NA | [98] |
Au/Ta3N5 | Nanoparticles | Pt (1.0) | 300 W Xe (λ>420 nm) | Methanol | 150.0 | NA | [119] |
ZrO2/TaON | Nanoparticles | IrO2/Cr2O3/RuOx (3.0) | 450 W Hg (λ>400 nm) | Water | 15.0 | 6.70 | [18] |
LaMg1/3Ta2/3ON | Nanoparticles | RhCrOy (0.5) | 300 W Xe (λ>420 nm) | Water | 5.0 | 2.50 | [21] |
CaTaO2N | Nanoparticles | RhCrOy | 300 W Xe (λ>420 nm) | Water | 0.7 | 0.35 | [51] |