Development of Perennial Wheat Through Hybridization Between Wheat and Wheatgrasses: A Review
Received date: 09 Feb 2018
Revised date: 16 Mar 2018
Accepted date: 23 Mar 2018
Published date: 11 Sep 2018
Copyright
Wheatgrasses (Thinopyrum spp.), which are relatives of wheat (Triticum aestivum L.), have a perennial growth habit and offer resistance to a diversity of biotic and abiotic stresses, making them useful in wheat improvement. Many of these desirable traits from Thinopyrum spp. have been used to develop wheat cultivars by introgression breeding. The perennial growth habit of wheatgrasses inherits as a complex quantitative trait that is controlled by many unknown genes. Previous studies have indicated that Thinopyrum spp. are able to hybridize with wheat and produce viable/stable amphiploids or partial amphiploids. Meanwhile, efforts have been made to develop perennial wheat by domestication of Thinopyrum spp. The most promising perennial wheat–Thinopyrum lines can be used as grain and/or forage crops, which combine the desirable traits of both parents. The wheat–Thinopyrum lines can adapt to diverse agricultural systems. This paper summarizes the development of perennial wheat based on Thinopyrum, and the genetic aspects, breeding methods, and perspectives of wheat–Thinopyrum hybrids.
Key words: Thinopyrum; Wheatgrass; Perennial; Triticum aestivum
Lei Cui , Yongkang Ren , Timothy D. Murray , Wenze Yan , Qing Guo , Yuqi Niu , Yu Sun , Hongjie Li . Development of Perennial Wheat Through Hybridization Between Wheat and Wheatgrasses: A Review[J]. Engineering, 2018 , 4(4) : 507 -513 . DOI: 10.1016/j.eng.2018.07.003
Financial support provided by the National Key Research and Development Project (2017YFD0101002), the Natural Science Foundation of Shanxi Province (201601D021128), the Postdoctoral Science Foundation of Shanxi Academy of Agricultural Sciences (YBSJJ1808), the CAAS Innovation Team (CAAS-GJHZ201700X), and the National Engineering Laboratory of Crop Molecular Breeding is gratefully appreciated.
Lei Cui, Yongkang Ren, Timothy D. Murray, Wenze Yan, Qing Guo, Yuqi Niu, Yu Sun, and Hongjie Li declare that they have no conflict of interest or financial conflicts to disclose.
[1] |
Glover J.D., Reganold J.P., Bell L.W., Borevitz J., Brummer E.C., Buckler E.S.,
|
[2] |
Jones J.M., Engleson J.. Whole grains: benefits and challenges. Annu Rev Food Sci Technol. 2010; 1: 19-40.
|
[3] |
Department of Economic and Social Affairs of the United Nation. The 2017 revision of word population prospect. Report. Report No.: ESA/P/WP/248
|
[4] |
Eswaran H., Beinroth F., Reich P.. Global land resources and population-supporting capacity. Am J Altern Agric. 1999; 14(3): 129-136.
|
[5] |
Lam H.M., Remais J., Fung M.C., Xu L., Sun S.S.M.. Food supply and food safety issues in China. Lancet. 2013; 381(9882): 2044-2053.
|
[6] |
Meng Q.F., Hou P., Wu L., Chen X.P., Cui Z.L., Zhang F.S.. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Res. 2013; 143: 91-97.
|
[7] |
Li Y.X., Zhang W.F., Ma L., Wu L., Shen J.B., Davies W.J.,
|
[8] |
Nkonya E., Mirzabaev A., von Braun J.. Economics of land degradation and improvement: an introduction and overview. In:
|
[9] |
Monfreda C., Ramankutty N., Foley J.A.. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles. 2008; 22(1): 1-19.
|
[10] |
Gantzer C.J., Anderson S.H., Thompson A.L., Brown J.R.. Estimating soil erosion after 100 years of cropping on Sanborn Field. J Soil Water Conserv. 1990; 45(6): 641-644.
|
[11] |
Randall G.W., Mulla D.J.. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J Environ Qual. 2001; 30(2): 337-344.
|
[12] |
Cox T.S., Van Tassel D.L., Cox C.M., DeHaan L.R.. Progress in breeding perennial grains. Crop Pasture Sci. 2010; 61(7): 513-521.
|
[13] |
Kantar M.B., Tyl C.E., Dorn K.M., Zhang X., Jungers J.M., Kaser J.M.,
|
[14] |
Colmer T.D., Munns R., Flowers T.J.. Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric. 2006; 45(11): 1425-1443.
|
[15] |
Sanderson M.A., Adler P.R.. Perennial forages as second generation bioenergy crops. Int J Mol Sci. 2008; 9(5): 768-788.
|
[16] |
Borrill P., Connorton J.M., Balk J., Miller A.J., Sanders D., Uauy C.. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci. 2014; 5: 53.
|
[17] |
Cooney D., Kim H., Quinn L., Lee M.S., Guo J., Chen S.L.,
|
[18] |
Cox T.S., Bender M., Picone C., Van Tassel D.L., Holland J.B., Brummer E.C.,
|
[19] |
Culman S.W., Snapp S.S., Ollenburger M., Basso B., DeHeen L.R.. Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass. Agron J. 2013; 105(3): 735-744.
|
[20] |
Zhao X.Q., Zhang T., Huang L.Y., Wu H.M., Hu F.Y., Zhang F.,
|
[21] |
Zhang S.L., Wang W.S., Zhang J., Ting Z., Huang W.Q., Xu P.. The progression of perennial rice breeding and genetics research in China. In:
|
[22] |
Zhang S.L., Hu J., Yang C.D., Liu H.T., Yang F., Zhou J.H.,
|
[23] |
Cox S., Nabukalu P., Paterson A.H., Kong W.Q., Nakasagga S.. Development of perennial grain sorghum. Sustainability. 2018; 10(1): 172.
|
[24] |
Curwen-Mcadams C., Jones S.S.. Breeding perennial grain crops based on wheat. Crop Sci. 2017; 57(3): 1172-1188.
|
[25] |
Davies C.L., Waugh D.L., Lefroy E.C.. Variation in seed yield and its components in the Australian native grass Microlaena stipoides as a guide to its potential as a perennial grain crop. Aust J Agric Res. 2005; 56(3): 309-316.
|
[26] |
Bell L.W., Byrne F., Ewing M.A., Wade L.J.. A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agric Syst. 2008; 96(1–3): 166-174.
|
[27] |
Bell L.W., Wade L.J., Ewing M.A.. Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop Pasture Sci. 2010; 61(9): 679-690.
|
[28] |
Kasem S., Waters D.L., Rice N., Shapter F.M., Henry R.J.. Whole grain morphology or Australian rice species. Plant Genet Resour. 2010; 8(1): 74-81.
|
[29] |
Shapter F.M., Cross M., Ablett G., Malory S., Chivers I.H., King G.J.,
|
[30] |
Larkin P.J., Newell M.T.. Perennial wheat breeding: current germplasm and a way forward for breeding and global cooperation. In:
|
[31] |
Suneson C.A., Sharkawy A.E., Hall W.E.. Progress in 25 years of perennial wheat development. Crop Sci. 1963; 3(5): 437-439.
|
[32] |
Sun S.C.. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin. 1981; 7(1): 51-57. Chinese
|
[33] |
Li H.J., Conner R.L., Murray T.D.. Resistance to soil-borne diseases of wheat: contributions from the wheatgrasses Thinopyrum intermedium and Th. ponticum. Can J Plant Sci. 2008; 88(1): 195-205.
|
[34] |
DeHaan L.R., Wang S.W., Larson S.R., Cattani D.J., Zhang X.F., Kantarski T.. Current efforts to develop perennial wheat and domesticate Thinopyrum intermedium as a perennial grain. In:
|
[35] |
Chen Q.. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe—a landmark approach for Thinopyrum genome research. Cytogenet Genome Res. 2005; 109(1–3): 350-359.
|
[36] |
Li H., Wang X.. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics. 2009; 36(9): 557-565.
|
[37] |
Gazza L., Galassi E., Ciccoritti R., Cacciatori P., Pogna N.E.. Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet Resour Crop Evol. 2016; 63(2): 209-219.
|
[38] |
Wagoner P.. Perennial grain new use for intermediate wheatgrass. J Soil Water Conserv. 1990; 45(1): 81-82.
|
[39] |
Becker R., Wagoner P., Hanners G.D., Saunders R.M.. Compositional, nutritional and functional evaluation of intermediate wheatgrass (Thinopyrum intermedium). J Food Process Preserv. 1991; 15(1): 63-77.
|
[40] |
Cao S., Xu H., Li Z., Wang X., Wang D., Zhang A.,
|
[41] |
Murphy K.M., Hoagland L.A., Reeves P.G., Baik B.K., Jones S.S.. Nutritional and quality characteristics expressed in 31 perennial wheat breeding lines. Renew Agric Food Syst. 2009; 24(4): 285-292.
|
[42] |
Gelfand I., Sahajpal R., Zhang X., Izaurralde R.C., Gross K.L., Robertson G.P.. Sustainable bioenergy production from marginal lands in the US Midwest. Nature. 2013; 493(7433): 514-517.
|
[43] |
Harmoney K.R.. Cool-season grass biomass in the southern mixed-grass prairie region of the USA. BioEnergy Res. 2015; 8(1): 203-210.
|
[44] |
Jungers J.M., DeHaan L.R., Betts K.J., Sheaffer C.C., Wyse D.L.. Intermediate wheatgrass grain and forage yield responses to nitrogen fertilization. Agron J. 2017; 109(2): 462-472.
|
[45] |
Newell M.T., Hayes R.C.. An initial investigation of forage production and feed quality of perennial wheat derivatives. Crop Pasture Sci. 2017; 68(12): 1141-1148.
|
[46] |
Larkin P.J., Newell M.T., Hayes R.C., Aktar J., Norton M.R., Moroni S.J.,
|
[47] |
Wagoner P., Schaeffer J.R.. Perennial grain development: past efforts and potential for the future. Crit Rev Plant Sci. 1990; 9(5): 381-408.
|
[48] |
Armstrong J.M.. Hybridization of Triticum and Agropyron: I. Crossing results and description of the first generation hybrids. Can J Res. 1936; 14c(5): 190-202.
|
[49] |
Peto F.H.. Hybridization of Triticum and Agropyron: II. Cytology of the male parents and F1 generation. Can J Res. 1936; 14c(5): 203-214.
|
[50] |
Smith D.C.. Intergenetic hybridization of Triticum and other grasses, principally Agropyron. J Hered. 1943; 34(7): 219-224.
|
[51] |
Tsitsin N.V.. Remote hybridization as a method of creating new species and varieties of plants. Euphytica. 1965; 14(3): 326-330.
|
[52] |
Scheinost P.L., Lammer D.L., Cai X.W., Murray T.D., Jones S.S.. Perennial wheat: the development of a sustainable cropping system for the US Pacific Northwest. Am J Altern Agric. 2001; 16(4): 147-151.
|
[53] |
Schulz-Schaeffer J., Haller S.E.. Registration of montana-2 perennial × Agrotriticum intermediodurum Khizhnyak. Crop Sci. 1987; 27(4): 822-823.
|
[54] |
Jones T.A., Zhang X.Y., Wang R.R.C.. Genome characterization of MT-2 perennial and OK-906 annual wheat × intermediate wheatgrass hybrids. Crop Sci. 1999; 39(4): 1041-1043.
|
[55] |
Lammer D., Cai X., Arterburn M., Chatelain J., Murray T., Jones S.. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot. 2004; 55(403): 1715-1720.
|
[56] |
Zhao H.B., Zhang Y.M., Shi C.L., Yan X.D., Tian C., Li Y.P.,
|
[57] |
Abbo S.. Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 2014; 19(6): 351-360.
|
[58] |
Hayes R.C., Newell M.T., DeHaan L.R., Murphy K.M., Crane S., Norton M.R.,
|
[59] |
Dong Y.S., Zhou R.H., Xu S.J., Li L.H., Cauderon Y., Wang R.R.C.. Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas. 1992; 116(1–2): 175-178.
|
[60] |
Sun S.C.. Pursuit and exploration. Chinese
|
[61] |
Sun Y., Sun S.C., Liu S.X., Yan G.Y., Guo Q.. Study on varieties breeding and selection of perennial wheat. Seed. 2011; 30(4): 21-26. Chinese
|
[62] |
Li H.J., Cui L., Li H.L., Wang X.M., Murray T.D., Conner R.L.,
|
[63] |
Li Z., Li B., Tong Y.. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genomics. 2008; 35(8): 451-456.
|
[64] |
Lenser T., Theißen G.. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 2013; 18(12): 704-714.
|
[65] |
DeHaan L.R., Van Tassel D.L., Anderson J.A., Asselin S.R., Barnes R., Baute G.J.,
|
[66] |
Li Q., Li L., Yang X., Warburton M.L., Bai G., Dai J.,
|
[67] |
Su Z., Hao C., Wang L., Dong Y., Zhang X.. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2011; 122(1): 211-223.
|
[68] |
Asp T., Byrne S., Gundlach H., Bruggmann R., Mayer K.F.X., Andersen J.R.,
|
[69] |
Fradkin M., Ferrari M.R., Ferreira V., Grassi E.M., Greizerstein E.J., Poggio L.. Chromosome and genome composition of a Triticum × Thinopyrum hybrid by classical and molecular cytogenetic techniques. Genet Resour Crop Evol. 2012; 59(2): 231-237.
|
[70] |
Marti A., Qiu X., Schoenfuss T.C., Seetharaman K.. Characteristics of perennial wheatgrass (Thinopyrum intermedium) and refined wheat flour blends: impact on rheological properties. Cereal Chem. 2015; 92(5): 434-440.
|
[71] |
Marti A., Bock J.E., Pagani M.A., Ismail B., Seetharaman K.. Structural characterization of proteins in wheat flour doughs enriched with intermediate wheatgrass (Thinopyrum intermedium) flour. Food Chem. 2016; 194: 994-1002.
|
[72] |
Cattani D.J.. Selection of a perennial grain for seed productivity across years: intermediate wheatgrass as a test species. Can J Plant Sci. 2016; 97(3): 516-524.
|
[73] |
Zhang X.F., DeHaan L.R., Higgins L., Markowski T.W., Wyse D.L., Anderson J.A.. New insights into high-molecular-weight glutenin subunits and sub-genomes of the perennial crop Thinopyrum intermedium (Triticeae). J Cereal Sci. 2014; 59(2): 203-210.
|
[74] |
Jauhar P.P.. Multidisciplinary approach to genome analysis in the diploid species, Thinopyrum bessarabicum and Th. elongatum (Lophopyrum elongatum), of the Triticeae. Theor Appl Genet. 1990; 80(4): 523-536.
|
[75] |
Zhang X., Dong Y., Wang R.R.C.. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome. 1996; 39(6): 1062-1071.
|
[76] |
DeHaan L.R., Van Tassel D.L.. Useful insights from evolutionary biology for developing perennial grain crops. Am J Bot. 2014; 101(10): 1801-1819.
|
[77] |
Chen Q., Conner R.L., Li H.J., Graf R., Laroche A., Li Y.H.,
|
[78] |
Ma X.F., Gustafson J.P.. Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot. 2008; 101(6): 825-832.
|
[79] |
Sykes V.R., Allen F.L., DeSantis A.C., Saxton A.M., Bhandari H.S., West D.R.,
|
[80] |
Zhang X., Sallam A., Gao L., Kantarski T., Poland J., DeHaan L.R.,
|
[81] |
Kantarski T., Larson S., Zhang X., DeHaan L., Borevitz J., Anderson J.,
|
[82] |
Araus J.L., Cairns J.E.. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014; 19(1): 52-61.
|
[83] |
Pimentel D., Cerasale D., Stanley R.C., Perlman R., Newman E.M., Brent L.C.,
|
[84] |
Weik L., Kaul H.P., Kübler E., Aufhammer W.. Grain yields of perennial grain crops in pure and mixed stands. J Agron Crop Sci. 2002; 188(5): 342-349.
|
[85] |
Robinson M.D., Murray T.D.. Genetic variation of wheat streak mosaic virus in the United States Pacific Northwest. Phytopathology. 2013; 103(1): 98-104.
|
[86] |
Jia J.Z., Li H.J., Zhang X.Y., Li Z.C., Qiu L.J.. Genomics-based plant germplasm research (GPGR). Crop J. 2017; 5(2): 166-174.
|
[87] |
Lou H., Dong L., Zhang K., Wang D.W., Zhao M., Li Y.,
|
[88] |
Wang R.R.C., Larson S.R., Jensen K.B.. Differential transferability of EST-SSR primers developed from the diploid species Pseudoroegneria spicata, Thinopyrum bessarabicum, and Thinopyrum elongatum. Genome. 2017; 60(6): 530-536.
|
[89] |
Xu Y.B., Crouch J.H.. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 2008; 48(2): 391-407.
|
[90] |
Watson A., Ghosh S., Williams M.J., Cuddy W.S., Simmonds J., Rey M.D.,
|
/
〈 | 〉 |