Regulatory T Cells and Their Clinical Applications in Antitumor Immunotherapy
Received date: 23 Jul 2018
Revised date: 08 Nov 2018
Accepted date: 07 Dec 2018
Published date: 05 Feb 2019
Copyright
Cancer is a potentially life-threatening disease characterized by the immortalization of tumor cells in the host. Immunotherapy has recently gained increasing interest among researchers due to its tremendous potential for preventing tumor progression and metastasis. Regulatory T cells (Tregs) are a subgroup of suppressive CD4+ T cells that play a vital role in the maintenance of host immune homeostasis. Treg deficiency can induce severe autoimmune, hypersensitivity, and auto-inflammatory disorders, among other diseases. Tregs are commonly enriched in a tumor microenvironment, and a greater number of immune-suppressive Tregs often indicates a poorer prognosis; therefore, there is renewed interest in the function of Tregs and in their clinical application in antitumor immunotherapy. Accumulating strategies that focus on the depletion of Tregs have appeared to be effective in antitumor immunity. It is expected that Treg-targeting strategies will provide great opportunities for improving antitumor efficiency in combination with other therapeutics (e.g., chimeric antigen receptor T cell (CAR-T)-based cell therapy or immune checkpoint blockading).
Key words: Regulatory T cells; Cancer; Immunotherapy
Feng Xie , Rui Liang , Dan Li , Bin Li . Regulatory T Cells and Their Clinical Applications in Antitumor Immunotherapy[J]. Engineering, 2019 , 5(1) : 132 -139 . DOI: 10.1016/j.eng.2018.12.002
[1] |
Prise K.M., O’Sullivan J.M.. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009; 9(5): 351-360.
|
[2] |
Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B.,
|
[3] |
Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F.,
|
[4] |
Topalian S.L., Sznol M., McDermott D.F., Kluger H.M., Carvajal R.D., Sharfman W.H.,
|
[5] |
Rizvi N.A., Mazières J., Planchard D., Stinchcombe T.E., Dy G.K., Antonia S.J.,
|
[6] |
Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E.,
|
[7] |
Brahmer J.R., Drake C.G., Wollner I., Powderly J.D., Picus J., Sharfman W.H.,
|
[8] |
Locke F.L., Neelapu S.S., Bartlett N.L., Siddiqi T., Chavez J.C., Hosing C.M.,
|
[9] |
Topalian S.L., Drake C.G., Pardoll D.M.. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015; 27(4): 450-461.
|
[10] |
Shimizu J., Yamazaki S., Sakaguchi S.. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol. 1999; 163(10): 5211-5218.
|
[11] |
Jordan M.S., Boesteanu A., Reed A.J., Petrone A.L., Holenbeck A.E., Lerman M.A.,
|
[12] |
Arce Vargas F., Furness A.J.S., Solomon I., Joshi K., Mekkaoui L., Lesko M.H.,
|
[13] |
Mucida D., Park Y., Kim G., Turovskaya O., Scott I., Kronenberg M.,
|
[14] |
Chen W., Jin W., Hardegen N., Lei K.J., Li L., Marinos N.,
|
[15] |
Munn D.H., Sharma M.D., Lee J.R., Jhaver K.G., Johnson T.S., Keskin D.B.,
|
[16] |
Kim Y.C., Bhairavabhotla R., Yoon J., Golding A., Thornton A.M., Tran D.Q.,
|
[17] |
Yadav M., Louvet C., Davini D., Gardner J.M., Martinez-Llordella M., Bailey-Bucktrout S.,
|
[18] |
Okamura T., Fujio K., Sumitomo S., Yamamoto K.. Roles of LAG3 and EGR2 in regulatory T cells. Ann Rheum Dis. 2012; 71(Suppl. 2): i96-100.
|
[19] |
Kim J.K., Klinger M., Benjamin J., Xiao Y., Erle D.J., Littman D.R.,
|
[20] |
Kronenberg M., Rudensky A.. Regulation of immunity by self-reactive T cells. Nature. 2005; 435(7042): 598-604.
|
[21] |
Salomon B., Lenschow D.J., Rhee L., Ashourian N., Singh B., Sharpe A.,
|
[22] |
Tai X., Cowan M., Feigenbaum L., Singer A.. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol. 2005; 6(2): 152-162.
|
[23] |
D’Cruz L.M., Klein L.. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 2005; 6(11): 1152-1159.
|
[24] |
Ruan Q., Kameswaran V., Tone Y., Li L., Liou H.C., Greene M.I.,
|
[25] |
Akiyama T., Maeda S., Yamane S., Ogino K., Kasai M., Kajiura F.,
|
[26] |
Overacre-Delgoffe A.E., Chikina M., Dadey R.E., Yano H., Brunazzi E.A., Shayan G.,
|
[27] |
Fontenot J.D., Gavin M.A., Rudensky A.Y.. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003; 4(4): 330-336.
|
[28] |
Chen G.Y., Chen C., Wang L., Chang X., Zheng P., Liu Y.. Cutting edge: broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol. 2008; 180(8): 5163-5166.
|
[29] |
Kalekar L.A., Mueller D.L.. Relationship between CD4 regulatory T cells and anergy in vivo. J Immunol. 2017; 198(7): 2527-2533.
|
[30] |
Ohkura N., Hamaguchi M., Morikawa H., Sugimura K., Tanaka A., Ito Y.,
|
[31] |
Povoleri G.A., Scottà C., Nova-Lamperti E.A., John S., Lombardi G., Afzali B.. Thymic versus induced regulatory T cells—who regulates the regulators?. Front Immunol. 2013; 4: 169.
|
[32] |
Zheng Y., Josefowicz S., Chaudhry A., Peng X.P., Forbush K., Rudensky A.Y.. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010; 463(7282): 808-812.
|
[33] |
Yao Z., Kanno Y., Kerenyi M., Stephens G., Durant L., Watford W.T.,
|
[34] |
Nagar M., Vernitsky H., Cohen Y., Dominissini D., Berkun Y., Rechavi G.,
|
[35] |
Ouyang W., Beckett O., Ma Q., Paik J.H., DePinho R.A., Li M.O.. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 2010; 11(7): 618-627.
|
[36] |
Chen Z., Barbi J., Bu S., Yang H.Y., Li Z., Gao Y.,
|
[37] |
van Loosdregt J., Fleskens V., Fu J.,
|
[38] |
Li Y., Lu Y., Wang S., Han Z., Zhu F., Ni Y.,
|
[39] |
Li B., Samanta A., Song X., Iacono K.T., Bembas K., Tao R.,
|
[40] |
Liu Y., Wang L., Predina J., Han R., Beier U.H., Wang L.C.,
|
[41] |
van Loosdregt J., Brunen D., Fleskens V., Pals C.E., Lam E.W., Coffer P.J.. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS One. 2011; 6(4): e19047.
|
[42] |
Kim H.P., Leonard W.J.. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med. 2007; 204(7): 1543-1551.
|
[43] |
Read S., Malmström V., Powrie F.. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med. 2000; 192(2): 295-302.
|
[44] |
Collison L.W., Workman C.J., Kuo T.T., Boyd K., Wang Y., Vignali K.M.,
|
[45] |
Asseman C., Mauze S., Leach M.W., Coffman R.L., Powrie F.. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999; 190(7): 995-1004.
|
[46] |
Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M.,
|
[47] |
Wang Y., Mao Y., Zhang J., Shi G., Cheng L., Lin Y.,
|
[48] |
Turnis M.E., Sawant D.V., Szymczak-Workman A.L., Andrews L.P., Delgoffe G.M., Yano H.,
|
[49] |
Kurschus F.C., Kleinschmidt M., Fellows E.,
|
[50] |
Gondek D.C., Lu L.F., Quezada S.A., Sakaguchi S., Noelle R.J.. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005; 174(4): 1783-1786.
|
[51] |
Harding F.A., McArthur J.G., Gross J.A., Raulet D.H., Allison J.P.. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992; 356(6370): 607-609.
|
[52] |
Krummel M.F., Allison J.P.. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995; 182(2): 459-465.
|
[53] |
Magistrelli G., Jeannin P., Herbault N., Benoit De Coignac A., Gauchat J.F., Bonnefoy J.Y.,
|
[54] |
Stephens G.L., McHugh R.S., Whitters M.J., Young D.A., Luxenberg D., Carreno B.M.,
|
[55] |
Garín M.I., Chu C.C., Golshayan D., Cernuda-Morollón E., Wait R., Lechler R.I.. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007; 109(5): 2058-2065.
|
[56] |
Borsellino G., Kleinewietfeld M., Di Mitri D., Sternjak A., Diamantini A., Giometto R.,
|
[57] |
Kobie J.J., Shah P.R., Yang L., Rebhahn J.A., Fowell D.J., Mosmann T.R.. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol. 2006; 177(10): 6780-6786.
|
[58] |
Pandiyan P., Zheng L., Ishihara S., Reed J., Lenardo M.J.. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007; 8(12): 1353-1362.
|
[59] |
Liang B., Workman C., Lee J., Chew C., Dale B.M., Colonna L.,
|
[60] |
Yu X., Harden K., Gonzalez L.C., Francesco M., Chiang E., Irving B.,
|
[61] |
Sarris M., Andersen K.G., Randow F., Mayr L., Betz A.G.. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity. 2008; 28(3): 402-413.
|
[62] |
Fallarino F., Grohmann U., Hwang K.W., Orabona C., Vacca C., Bianchi R.,
|
[63] |
Maj T., Wang W., Crespo J., Zhang H., Wang W., Wei S.,
|
[64] |
Powrie F., Leach M.W., Mauze S., Caddle L.B., Coffman R.L.. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 1993; 5(11): 1461-1471.
|
[65] |
Bennett C.L., Christie J., Ramsdell F., Brunkow M.E., Ferguson P.J., Whitesell L.,
|
[66] |
Brunkow M.E., Jeffery E.W., Hjerrild K.A., Paeper B., Clark L.B., Yasayko S.A.,
|
[67] |
Zou W.. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006; 6: 295-307.
|
[68] |
Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A.,
|
[69] |
Saito T., Nishikawa H., Wada H., Nagano Y., Sugiyama D., Atarashi K.,
|
[70] |
Crusz S.M., Balkwill F.R.. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015; 12(10): 584-596.
|
[71] |
Erdman S.E., Poutahidis T.. Cancer inflammation and regulatory T cells. Int J Cancer. 2010; 127(4): 768-779.
|
[72] |
Cipolletta D., Feuerer M., Li A., Kamei N., Lee J., Shoelson S.E.,
|
[73] |
Kolodin D., van Panhuys N., Li C., Magnuson A.M., Cipolletta D., Miller C.M.,
|
[74] |
Burzyn D., Kuswanto W., Kolodin D., Shadrach J.L., Cerletti M., Jang Y.,
|
[75] |
Arpaia N., Green J.A., Moltedo B., Arvey A., Hemmers S., Yuan S.,
|
[76] |
Ali N., Zirak B., Rodriguez R.S., Pauli M.L., Truong H.A., Lai K.,
|
[77] |
Warburg O.. On respiratory impairment in cancer cells. Science. 1956; 124(3215): 269-270.
|
[78] |
Pearce E.L., Pearce E.J.. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013; 38(4): 633-643.
|
[79] |
Locasale J.W.. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013; 13(8): 572-583.
|
[80] |
Chang C.H., Qiu J., O’Sullivan D., Buck M.D., Noguchi T., Curtis J.D.,
|
[81] |
Gobert M., Treilleux I., Bendriss-Vermare N., Bachelot T., Goddard-Leon S., Arfi V.,
|
[82] |
Wei S., Kryczek I., Edwards R.P., Zou L., Szeliga W., Banerjee M.,
|
[83] |
Plitas G., Konopacki C., Wu K., Bos P.D., Morrow M., Putintseva E.V.,
|
[84] |
Villarreal D.O., L’Huillier A., Armington S., Mottershead C., Filippova E.V., Coder B.D.,
|
[85] |
De Simone M., Arrigoni A., Rossetti G., Gruarin P., Ranzani V., Politano C.,
|
[86] |
Zheng C., Zheng L., Yoo J.K., Guo H., Zhang Y., Guo X.,
|
[87] |
Liakou C.I., Kamat A., Tang D.N., Chen H., Sun J., Troncoso P.,
|
[88] |
Hodi F.S., Butler M., Oble D.A., Seiden M.V., Haluska F.G., Kruse A.,
|
[89] |
Peggs K.S., Quezada S.A., Chambers C.A., Korman A.J., Allison J.P.. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009; 206(8): 1717-1725.
|
[90] |
Park H.J., Park J.S., Jeong Y.H., Son J., Ban Y.H., Lee B.H.,
|
[91] |
Shimizu J., Yamazaki S., Takahashi T., Ishida Y., Sakaguchi S.. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002; 3(2): 135-142.
|
[92] |
Bulliard Y., Jolicoeur R., Windman M., Rue S.M., Ettenberg S., Knee D.A.,
|
[93] |
Curti B.D., Kovacsovics-Bankowski M., Morris N., Walker E., Chisholm L., Floyd K.,
|
[94] |
Bulliard Y., Jolicoeur R., Zhang J., Dranoff G., Wilson N.S., Brogdon J.L.. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol. 2014; 92(6): 475-480.
|
[95] |
Ko K., Yamazaki S., Nakamura K., Nishioka T., Hirota K., Yamaguchi T.,
|
[96] |
Gopal A.K., Kahl B.S., de Vos S., Wagner-Johnston N.D., Schuster S.J., Jurczak W.J.,
|
[97] |
Ali K., Soond D.R., Pineiro R., Hagemann T., Pearce W., Lim E.L.,
|
[98] |
Levin A.M., Bates D.L., Ring A.M., Krieg C., Lin J.T., Su L.,
|
[99] |
Klapper J.A., Downey S.G., Smith F.O., Yang J.C., Hughes M.S., Kammula U.S.,
|
[100] |
Jacobs J.F., Punt C.J., Lesterhuis W.J., Sutmuller R.P., Brouwer H.M., Scharenborg N.M.,
|
[101] |
Rech A.J., Mick R., Martin S., Recio A., Aqui N.A., Powell D.J.Jr,
|
[102] |
Onizuka S., Tawara I., Shimizu J., Sakaguchi S., Fujita T., Nakayama E.. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 1999; 59(13): 3128-3133.
|
[103] |
Ghiringhelli F., Larmonier N., Schmitt E., Parcellier A., Cathelin D., Garrido C.,
|
[104] |
Motoyoshi Y., Kaminoda K., Saitoh O., Hamasaki K., Nakao K., Ishii N.,
|
[105] |
Ge Y., Domschke C., Stoiber N., Schott S., Heil J., Rom J.,
|
[106] |
Sugiyama D., Nishikawa H., Maeda Y., Nishioka M., Tanemura A., Katayama I.,
|
[107] |
Yi G., Guo S., Liu W., Wang H., Liu R., Tsun A.,
|
[108] |
Takeuchi Y., Nishikawa H.. Roles of regulatory T cells in cancer immunity. Int Immunol. 2016; 28(8): 401-409.
|
[109] |
Maeda Y., Nishikawa H., Sugiyama D., Ha D., Hamaguchi M., Saito T.,
|
/
〈 | 〉 |