Andrographolide Loaded in Micro- and Nano-Formulations: Improved Bioavailability, Target-Tissue Distribution, and Efficacy of the “King of Bitters”
Received date: 06 Sep 2018
Revised date: 25 Oct 2018
Accepted date: 12 Dec 2018
Published date: 05 Feb 2019
Copyright
Andrographolide (AG) is the characteristic constituent of Andrographis paniculata, of the Acanthaceae family. This plant is a well-known Asian medicinal plant that is widely used in India, China, and Thailand. A monograph of Herba Andrographidis (Chuanxinlian) is included in the Chinese Pharmacopoeia, which reports that this decoction can “remove heat, counteract toxicity, and reduce swellings.” The numerous potential activities of AG range from anti-inflammatory to anti-diabetic action, from neuroprotection to antitumor activity, and from hepatoprotective to anti-obesity properties. However, AG has low bioavailability and poor water solubility, which can limit its distribution and accumulation in the body after administration. In addition, AG is not stable in gastrointestinal alkaline and acidic environments, and has been reported to have a very short half-life. Among the diverse strategies that have been adopted to increase AG water solubility and permeability, the technological approach is the most useful way to develop appropriate delivery systems. This review reports on published studies related to microparticles (MPs) and nanoparticles (NPs) loaded with AG. MPs based on polylactic-glycolic acid (PLGA), alginic acid, and glucan derivatives have been developed for parenteral oral and pulmonary administration, respectively. NPs include vesicles (both liposomes and niosomes); polymeric NPs (based on polyvinyl alcohol, polymerized phenylboronic acid, PLGA, human serum albumin, poly ethylcyanoacrylate, and polymeric micelles); solid lipid NPs; microemulsions and nanoemulsions; gold NPs; nanocrystals; and nanosuspensions. Improved bioavailability, target-tissue distribution, and efficacy of AG loaded in the described drug delivery systems have been reported.
Marta Casamonti , Laura Risaliti , Giulia Vanti , Vieri Piazzini , Maria Camilla Bergonzi , Anna Rita Bilia . Andrographolide Loaded in Micro- and Nano-Formulations: Improved Bioavailability, Target-Tissue Distribution, and Efficacy of the “King of Bitters”[J]. Engineering, 2019 , 5(1) : 69 -75 . DOI: 10.1016/j.eng.2018.12.004
The authors thank the Fondazione Cassa Risparmio di Firenze for kindly supporting this review study.
Marta Casamonti, Laura Risaliti, Giulia Vanti, Veri Piazzini, Maria Camilla Bergonzi, and Anna Rita Bilia declare that they have no conflict of interest or financial conflicts to disclose.
[1] |
Thamlikitkul V., Dechatiwongse T., Theerapong S., Chantrakul C., Boonroj P., Punkrut W.,
|
[2] |
Poolsup N., Suthisisang C., Prathanturarug S., Asawamekin A., Chanchareon U.. Andrographis paniculata in the symptomatic treatment of uncomplicated upper respiratory tract infection: systematic review of randomized controlled trials. J Clin Pharm Ther. 2004; 29(1): 37-45.
|
[3] |
Saxena R.C., Singh R., Kumar P., Yadav S.C., Negi M.P.S., Saxena V.S.,
|
[4] |
In:
|
[5] |
Ganguly M., Manna A., Chandra G., Ghosh D., Ghosh L.K., Gupta B.K.. Andrographis paniculata: a promising herbal plant. Ind J Pharm Edu. 2001; 35(2): 63-64.
|
[6] |
Panossian A., Wikman G.. Efficacy of Andrographis paniculata in upper respiratory tract infectious diseases and the mechanism of action. In:
|
[7] |
Andrographidis Herba. In: World Health Organization. WHO monographs on selected medicinal plants. Geneva: World Health Organization; 2004. p. 12-24.
|
[8] |
Karioti A., Timoteo P., Bergonzi M.C., Bilia A.R.. A validated method for the quality control of Andrographis paniculata preparations. Planta Med. 2017; 83(14–15): 1207-1213.
|
[9] |
Dai Y., Chen S.R., Chai L., Zhao J., Wang Y., Wang Y.. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr.. 2018; Epub Sep 10
|
[10] |
Guccione C., Oufir M., Piazzini V., Eigenmann D.E., Jähne E.A., Zabela V.,
|
[11] |
Jiang Y., Wang F., Xu H., Liu H., Meng Q., Liu W.. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro–in vivo correlation. Int J Pharm. 2014; 475(1–2): 475-484.
|
[12] |
Shariff A., Manna P.K., Paranjothy K.L.K., Manjula M.. Entrapment of andrographolide in cross-linked alginate pellets: I. formulation and evaluation of associated release kinetics. Pak J Pharm Sci. 2007; 20(1): 1-9.
|
[13] |
Shariff A., Manna P.K., Paranjothy K.L.K., Manjula M.. Entrapment of andrographolide in cross-linked alginate pellets: II. physicochemical characterization to study the pelletization of andrographolide. Pak J Pharm Sci. 2007; 20(1): 9-15.
|
[14] |
Mali A.J., Bothiraja C., Purohit R.N., Pawar A.P.. In vitro and in vivo performance of novel spray dried andrographolide loaded scleroglucan based formulation for dry powder inhaler. Curr Drug Deliv. 2017; 14(7): 968-980.
|
[15] |
Bilia A.R., Piazzini V., Guccione C., Risaliti L., Asprea M., Capecchi G.,
|
[16] |
Roy P., Das S., Mondal A., Chatterji U., Mukherjee A.. Nanoparticle engineering enhances anticancer efficacy of andrographolide in MCF-7 cells and mice bearing EAC. Curr Pharm Biotechnol. 2012; 13(15): 2669-2681.
|
[17] |
Kim J., Lee J., Lee Y.M., Pramanick S., Im S., Kim W.J.. Andrographolide-loaded polymerized phenylboronic acid nanoconstruct for stimuli-responsive chemotherapy. J Control Release. 2017; 259: 203-211.
|
[18] |
Roy P., Das S., Bera T., Mondol S., Mukherjee A.. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomed. 2010; 5: 1113-1121.
|
[19] |
Roy P., Das S., Auddy R.G., Mukherjee A.. Engineered andrographolide nanosystems for smart recovery in hepatotoxic conditions. Int J Nanomed. 2014; 9: 4723-4735.
|
[20] |
Das S., Pradhan G.K., Das S., Nath D., Das Saha K.. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage. Chem Biol Interact. 2015; 242: 281-289.
|
[21] |
Chellampillai B., Pawar A.P.. Improved bioavailability of orally administered andrographolide from pH-sensitive nanoparticles. Eur J Drug Metab Ph. 2011; 35(3–4): 123-129.
|
[22] |
Zhang J., Li Y., Gao W., Repka M.A., Wang Y., Chen M.. Andrographolide-loaded PLGA-PEG-PLGA micelles to improve its bioavailability and anticancer efficacy. Expert Opin Drug Deliv. 2014; 11(9): 1367-1380. Erratum in: Expert Opin Drug Deliv 2015;12(4):689
|
[23] |
Yao H., Song S., Miao X., Liu X., Zhao J., Wang Z.,
|
[24] |
Bilia A.R., Bergonzi M.C., Guccione C., Manconi M., Fadda A.M., Sinico C.. Vesicles and micelles: two versatile vectors for the delivery of natural products. J Drug Deliv Sci Tec. 2016; 32(Pt B): 241-255.
|
[25] |
Kang X., Zheng Z., Liu Z., Wang H., Zhao Y., Zhang W.,
|
[26] |
Tu Y.S., Sun D.M., Zhang J.J., Jiang Z.Q., Chen Y.X., Zeng X.H.,
|
[27] |
Jain P.K., Khurana N., Pounikar Y., Gajbhiye A., Kharya M.D.. Enhancement of absorption and hepatoprotective potential through soya-phosphatidylcholine-andrographolide vesicular system. J Liposome Res. 2013; 23(2): 110-118.
|
[28] |
Maiti K., Mukherjee K., Murugan V., Saha B.P., Mukherjee P.K.. Enhancing bioavailability and hepatoprotective activity of andrographolide from Andrographis paniculata, a well-known medicinal food, through its herbosome. J Sci Food Agric. 2010; 90(1): 43-51.
|
[29] |
Sinha J., Mukhopadhyay S., Das N., Basu M.K.. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Deliv. 2000; 7(4): 209-213.
|
[30] |
Li M., Zhang T., Zhu L., Wang R., Jin Y.. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway. Int J Pharm. 2017; 528(1–2): 163-171.
|
[31] |
Piazzini V., Landucci E., Graverini G., Pellegrini-Giampietro D.E., Bilia A.R., Bergonzi M.C.. Stealth and cationic nanoliposomes as drug delivery systems to increase andrographolide BBB permeability. Pharmaceutics. 2018; 10(3): 128.
|
[32] |
Parveen R., Ahmad F.J., Iqbal Z., Samim M., Ahmad S.. Solid lipid nanoparticles of anticancer drug andrographolide: formulation, in vitro and in vivo studies. Drug Dev Ind Pharm. 2014; 40(9): 1206-1212.
|
[33] |
Yang T., Sheng H.H., Feng N.P., Wei H., Wang Z.T., Wang C.H.. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J Pharm Sci. 2013; 102(12): 4414-4425.
|
[34] |
Graverini G., Piazzini V., Landucci E., Pantano D., Nardiello P., Casamenti F.,
|
[35] |
McClements D.J.. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012; 8(6): 1719-1729.
|
[36] |
Yen C.C., Chen Y.C., Wu M.T., Wang C.C., Wu Y.T.. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int J Nanomed. 2018; 13: 669-680.
|
[37] |
Du H., Yang X., Li H., Han L., Li X., Dong X.,
|
[38] |
Mishra N., Yadav K.S., Rai V.K., Yadav N.P.. Polysaccharide encrusted multilayered nano-colloidal system of andrographolide for improved hepatoprotection. AAPS PharmSciTech. 2017; 18(2): 381-392.
|
[39] |
Kim C.K., Ghosh P., Rotello V.M.. Multimodal drug delivery using gold nanoparticles. Nanoscale. 2009; 1(1): 61-67.
|
[40] |
Das S., Halder A., Mandal S., Mazumder M.A.J., Bera T., Mukherjee A.,
|
[41] |
Ma Y., Yang Y., Xie J., Xu J., Yue P., Yang M.. Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide. Int J Nanomed. 2018; 13: 3763-3779.
|
[42] |
Xu J., Ma Y., Xie Y., Chen Y., Liu Y., Yue P.,
|
[43] |
Chen Y., Liu Y., Xu J., Xie Y., Zheng Q., Yue P.,
|
[44] |
Qiao H., Chen L., Rui T., Wang J., Chen T., Fu T.,
|
[45] |
Guo L., Kang L., Liu X., Lin X., Di D., Wu Y.,
|
/
〈 | 〉 |