Steel Design by Advanced Analysis: Material Modeling and Strain Limits
Received date: 31 Jul 2018
Revised date: 10 Sep 2018
Accepted date: 12 Nov 2018
Published date: 14 Apr 2019
Copyright
Structural analysis of steel frames is typically performed using beam elements. Since these elements are unable to explicitly capture the local buckling behavior of steel cross-sections, traditional steel design specifications use the concept of cross-section classification to determine the extent to which the strength and deformation capacity of a cross-section are affected by local buckling. The use of plastic design methods are restricted to Class 1 cross-sections, which possess sufficient rotation capacity for plastic hinges to develop and a collapse mechanism to form. Local buckling prevents the development of plastic hinges with such rotation capacity for cross-sections of higher classes and, unless computationally demanding shell elements are used, elastic analysis is required. However, this article demonstrates that local buckling can be mimicked effectively in beam elements by incorporating the continuous strength method (CSM) strain limits into the analysis. Furthermore, by performing an advanced analysis that accounts for both geometric and material nonlinearities, no additional design checks are required. The positive influence of the strain hardening observed in stocky cross-sections can also be harnessed, provided a suitably accurate stress–strain relationship is adopted; a quad-linear material model for hot-rolled steels is described for this purpose. The CSM strain limits allow cross-sections of all slenderness to be analyzed in a consistent advanced analysis framework and to benefit from the appropriate level of load redistribution. The proposed approach is applied herein to individual members, continuous beams, and frames, and is shown to bring significant benefits in terms of accuracy and consistency over current steel design specifications.
Leroy Gardner , Xiang Yun , Andreas Fieber , Lorenzo Macorini . Steel Design by Advanced Analysis: Material Modeling and Strain Limits[J]. Engineering, 2019 , 5(2) : 243 -249 . DOI: 10.1016/j.eng.2018.11.026
[1] |
EN 1993-1-1: Eurocode 3—design of steel structures—Part 1-1: general rules and rules for buildings. European standard. Brussels: European Committee for Standardization; 2005.
|
[2] |
AS 4100: Steel structures. Australian standard. Sydney: Standards Australia; 1998.
|
[3] |
AISC 360-16: Specification for structural steel buildings. American national standard. Chicago: American Institute of Steel Construction; 2016.
|
[4] |
Liew J.Y.R., Chen W.F., Chen H.. Advanced inelastic analysis of frame structures. J Construct Steel Res. 2000; 55(1–3): 245-265.
|
[5] |
Chen W.F.. Advanced analysis for structural steel building design. Front Archit Civ Eng China. 2008; 2(3): 189-196.
|
[6] |
Kim S.E., Chen W.F.. Design guide for steel frames using advanced analysis program. Eng Struct. 1999; 21(4): 352-364.
|
[7] |
Trahair N.S., Chan S.L.. Out-of-plane advanced analysis of steel structures. Eng Struct. 2003; 25(13): 1627-1637.
|
[8] |
Buonopane S.G., Schafer B.W.. Reliability of steel frames designed with advanced analysis. J Struct Eng. 2006; 132(2): 267-276.
|
[9] |
Rasmussen KJR, Zhang H, Cardoso F, Liu W. The direct design method for cold–formed steel structural frames. In: Proceedings of the 8th International Conference on Steel and Aluminium Structures; 2016 Dec 7–9; Hong Kong, China.
|
[10] |
Surovek A.E.. Advanced analysis in steel frame design: guidelines for direct second-order inelastic analysis.
|
[11] |
Gardner L.. The continuous strength method. Proc Inst Civ Eng Struct Build. 2008; 161(3): 127-133.
|
[12] |
Gardner L., Yun X., Macorini L., Kucukler M.. Hot-rolled steel and steel-concrete composite design incorporating strain hardening. Structures. 2017; 9: 21-28.
|
[13] |
Yun X., Gardner L.. Stress-strain curves for hot-rolled steels. J Construct Steel Res. 2017; 133: 36-46.
|
[14] |
Yun X., Gardner L., Boissonnade N.. The continuous strength method for the design of hot-rolled steel cross-sections. Eng Struct. 2018; 157: 179-191.
|
[15] |
Yun X., Gardner L., Boissonnade N.. Ultimate capacity of I-sections under combined loading—Part 2: parametric studies and CSM design. J Construct Steel Res. 2018; 148: 265-274.
|
[16] |
Zhang H., Shayan S., Rasmussen K.J.R., Ellingwood B.R.. System-based design of planar steel frames, I: reliability framework. J Construct Steel Res. 2016; 123: 135-143.
|
[17] |
Yun X., Gardner L., Boissonnade N.. Ultimate capacity of I-sections under combined loading—Part 1: experiments and FE model validation. J Construct Steel Res. 2018; 147: 408-421.
|
[18] |
Chan T.M., Gardner L.. Bending strength of hot-rolled elliptical hollow sections. J Construct Steel Res. 2008; 64(9): 971-986.
|
[19] |
Wang J., Afshan S., Gkantou M., Theofanous M., Baniotopoulos C., Gardner L.. Flexural behaviour of hot-finished high strength steel square and rectangular hollow sections. J Construct Steel Res. 2016; 121: 97-109.
|
[20] |
EN 1993-1-5: Eurocode 3—design of steel structures—Part 1–5: plated structural elements. European standard. Brussels: European Committee for Standardization; 2006.
|
[21] |
Seif M., Schafer B.W.. Local buckling of structural steel shapes. J Construct Steel Res. 2010; 66(10): 1232-1247.
|
[22] |
Gardner L., Fieber A., Macorini L.. Formulae for calculating elastic local buckling stresses of full structural cross-sections. Structures. 2019; 17: 2-20.
|
[23] |
Li Z, Schafer BW. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM: conventional and constrained finite strip methods. In: Proceedings of the 20th International Speciality Conference on Cold-Formed Steel Structures; 2010 Nov 3–4; Saint Louis, MO, USA. Rolla: Missouri University of Science and Technology; 2010. p. 17−31.
|
[24] |
Lay MG. The experimental bases of plastic design—a survey of the literature. Fritz laboratory report. Bethlehem: Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University; 1964 Sep. Report No.: 297.3. Publication No.: 258.
|
[25] |
Gioncu V., Petcu D.. Available rotation capacity of wide-flange beams and beam-columns. Part 2. Experimental and numerical tests. J Construct Steel Res. 1997; 43(1–3): 219-244.
|
[26] |
Lay MG, Galambos TV. The inelastic behavior of beams under moment gradient. Fritz Engineering Laboratory Report. Bethlehem: Lehigh University; 1964. Report No.: 197.
|
[27] |
Dassault Systemes Simulia Corp. Abaqus analysis user’s manual, version 6.13. Providence: Dassault Systemes; 2013.
|
[28] |
Crisfield M.A.. A fast incremental/iterative solution procedure that handles ‘snap-through’. Comput Struct. 1981; 13(1–3): 55-62.
|
[29] |
Greiner R., Lechner A., Kettler M.. Background information to design guidelines for cross-section and member design according to Eurocode 3 with particular focus on semi-compact sections.
|
[30] |
Avery P., Mahendran M.. Large-scale testing of steel frame structures comprising non-compact sections. Eng Struct. 2000; 22(8): 920-936.
|
/
〈 |
|
〉 |