Long-Term Cultivation and Meta-Omics Reveal Methylotrophic Methanogenesis in Hydrocarbon-Impacted Habitats
Received date: 01 Apr 2021
Published date: 24 Jan 2023
The microbial conversion of alkanes to methane in hydrocarbon contaminated environments is an intrinsic bioremediation strategy under anoxic conditions. However, the mechanism of microbial methanogenic alkane degradation is currently unclear. Under ten-years of continuous efforts, we obtained a methanogenic n-alkane-degrading (C15–C20) enrichment culture that exhibited sustained improvements in the kinetic properties of methane production. The integrated metagenomic and metatranscriptomic analyses revealed that n-alkanes were mainly attacked by members of Desulfosarcinaceae, Firmicutes, and Synergistetes using the fumarate addition strategy, and were then further degraded in a common effort by Tepidiphilus members. Meanwhile, the abundant members of Anaerolineaceae were mainly responsible for cell debris recycling. However, according to the metatranscriptomic analyses, methane was predicted to be produced mainly via H2-dependent methylotrophic methanogenesis, primarily from necromass-derived trimethylamine mediated by Methanomethyliaceae within the candidate phylum Verstraetearchaeota. These findings reveal that H2-dependent methylotrophic methanogens, as well as methylotrophic methanogens, may play important ecological roles in the carbon cycle of hydrocarbon enriched subsurface ecosystems.
Key words: Methanogenic hydrocarbon degradation; Oily sludge; Bioremediation; Alkanes
Yifan Liu , Jing Chen , Zhonglin Liu , Zhaowei Hou , Bo Liang , Liying Wang , Lei Zhou , Libin Shou , Dandan Lin , Shizhong Yang , Jinfeng Liu , Xiaolin Wu , Jidong Gu , Bozhong Mu . Long-Term Cultivation and Meta-Omics Reveal Methylotrophic Methanogenesis in Hydrocarbon-Impacted Habitats[J]. Engineering, 2023 , 24(5) : 265 -276 . DOI: 10.1016/j.eng.2021.08.027
[1] |
Kleinsteuber S, Schleinitz KM, Vogt C. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 2012;94(4):851‒73.
|
[2] |
Ghattas AK, Fischer F, Wick A, Ternes TA. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res 2017;116:268‒95.
|
[3] |
Gieg LM, Kolhatkar RV, McInerney MJ, Tanner RS, Harris SH, Sublette KL, et al. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ Sci Technol 1999;33(15):2550‒60.
|
[4] |
An D, Caffrey SM, Soh J, Agrawal A, Brown D, Budwill K, et al. Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol 2013;47(18):10708‒17.
|
[5] |
Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 1999;401(6750):266‒9.
|
[6] |
Mbadinga SM, Wang LY, Zhou L, Liu JF, Gu JD, Mu BZ. Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegradation 2011;65(1):1‒13.
|
[7] |
Gieg LM, Fowler SJ, Berdugo-Clavijo C. Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 2014;27:21‒9.
|
[8] |
Siddique T, Penner T, Semple K, Foght JM. Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 2011;45(13):5892‒9.
|
[9] |
Embree M, Nagarajan H, Movahedi N, Chitsaz H, Zengler K. Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J 2014;8(4):757‒67.
|
[10] |
Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, et al. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 2016;18(8):2604‒19.
|
[11] |
Oberding LK, Gieg LM. Methanogenic paraffin biodegradation: alkylsuccinate synthase gene quantification and dicarboxylic acid production. Appl Environ Microbiol 2017;84(1):e01773-17.
|
[12] |
Chen J, Liu YF, Zhou L, Mbadinga SM, Yang T, Zhou J, et al. Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Appl Microbiol Biotechnol 2019;103(5):2391‒401.
|
[13] |
Gieg LM, Duncan KE, Suflita JM. Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 2008;74(10):3022‒9.
|
[14] |
Dolfing J, Larter SR, Head IM. Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2008;2(4):442‒52.
|
[15] |
Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 2008;451(7175):176‒80.
|
[16] |
Cheng L, Ding C, Li Q, He Q, Dai LR, Zhang H. DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation. PLoS One 2013;8(7):e66784.
|
[17] |
Embree M, Liu JK, Al-Bassam MM, Zengler K. Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc Natl Acad Sci USA 2015;112(50):15450‒5.
|
[18] |
Liu YF, Galzerani DD, Mbadinga SM, Zaramela LS, Gu JD, Mu BZ, et al. Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome 2018;6(1):5.
|
[19] |
Meslé M, Dromart G, Oger P. Microbial methanogenesis in subsurface oil and coal. Res Microbiol 2013;164(9):959‒72.
|
[20] |
Wang LY, Gao CX, Mbadinga SM, Zhou L, Liu JF, Gu JD, et al. Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int Biodeterior Biodegradation 2011;65(3):444‒50.
|
[21] |
Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 2015;5(1):37.
|
[22] |
Wang LY, Li W, Mbadinga SM, Liu JF, Gu JD, Mu BZ. Methanogenic microbial community composition of oily sludge and its enrichment amended with alkanes incubated for over 500 days. Geomicrobiol J 2012;29(8):716‒26.
|
[23] |
Liu YF, Chen J, Liu ZL, Shou LB, Lin DD, Zhou L, et al. Anaerobic degradation of paraffins by thermophilic actinobacteria under methanogenic conditions. Environ Sci Technol 2020;54 (17):10610‒20.
|
[24] |
Gu JD. More than simply microbial growth curves. Appl Environ Biotechnol 2017;2 (1):63‒5.
|
[25] |
Symons BGE, Buswell AM. The methane fermentation of carbohydrates. J Am Chem Soc 1933;55 (5):2028‒36.
|
[26] |
Ren G, Zhang H, Lin X, Zhu J, Jia Z. Response of phyllosphere bacterial communities to elevated CO2 during rice growing season. Appl Microbiol Biotechnol 2014;98 (22):9459‒71.
|
[27] |
Ohene-Adjei S, Teather RM, Ivan M, Forster RJ. Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl Environ Microbiol 2007;73 (14):4609‒18.
|
[28] |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41 (D1):D590‒6.
|
[29] |
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19 (5):455‒77.
|
[30] |
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9 (4):357‒9.
|
[31] |
Lan F, Demaree B, Ahmed N, Abate AR. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol 2017;35 (7):640‒6.
|
[32] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.; the 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25 (16):2078‒9.
|
[33] |
Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016;32 (4):605‒7.
|
[34] |
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.
|
[35] |
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014;11 (11):1144‒6.
|
[36] |
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 2018;3 (7):836‒43.
|
[37] |
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25 (7):1043‒1055.
|
[38] |
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ´omics data. PeerJ 2015;3:e1319.
|
[39] |
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11 (1):119.
|
[40] |
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016;428 (4):726‒31.
|
[41] |
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012;40(W1):W445‒51.
|
[42] |
Dong X, Greening C, Rattray JE, Chakraborty A, Chuvochina M, Mayumi D, et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun 2019;10 (1):1816.
|
[43] |
Eddy SR. Accelerated profile HMM searches. PLOS Comput Biol 2011;7 (10):e1002195.
|
[44] |
Søndergaard D, Pedersen CNS, Greening C. HydDB: A web tool for hydrogenase classification and analysis. Sci Rep 2016;6 (1):34212.
|
[45] |
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9 (1):75.
|
[46] |
Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 2016;7:11257.
|
[47] |
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36 (10):996‒1004.
|
[48] |
Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 2013;10 (1):71‒3.
|
[49] |
Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 2016;32 (21):3246‒51.
|
[50] |
Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013;4 (1):2304.
|
[51] |
Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007;23 (1):127‒8.
|
[52] |
Xu D, Zhang K, Li BG, Mbadinga SM, Zhou L, Liu JF, et al. Simulation of in situ oil reservoir conditions in a laboratory bioreactor testing for methanogenic conversion of crude oil and analysis of the microbial community. Int Biodeterior Biodegradation 2019;136:24‒33.
|
[53] |
Callaghan AV. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 2013;4:89.
|
[54] |
Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, et al. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl) succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 2001;183 (5):1707‒15.
|
[55] |
Liu YF, Qi ZZ, Shou LB, Liu JF, Yang SZ, Gu JD, et al. Anaerobic hydrocarbon degradation in candidate phylum ‘Atribacteria’ (JS1) inferred from genomics. ISME J 2019;13 (9):2377‒90.
|
[56] |
Schouw A, Leiknes Eide T, Stokke R, Pedersen RB, Steen IH, Bødtker G. Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 2016;66 (4):1724‒34.
|
[57] |
Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, et al. Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 2009;75 (13):4580‒8.
|
[58] |
Khelifi N, Amin Ali O, Roche P, Grossi V, Brochier-Armanet C, Valette O, et al. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME J 2014;8(11):2153‒66.
|
[59] |
Callaghan AV, Morris BEL, Pereira IAC, McInerney MJ, Austin RN, Groves JT, et al. The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 2012;14(1):101‒13.
|
[60] |
Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 2013;496 (7444):215‒8.
|
[61] |
Ragsdale SW, Pierce E. Acetogenesis and the Wood‒Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 2008;1784 (12):1873‒98.
|
[62] |
Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 2014;12:09‒21.
|
[63] |
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008;6 (8):579‒91.
|
[64] |
Widdel F, Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 2001;12 (3):259‒76.
|
[65] |
Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 2016;539 (7629):396‒401.
|
[66] |
Wang Y, Wegener G, Hou J, Wang F, Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol 2019;4 (4):595‒602.
|
[67] |
Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 2016;1:16170.
|
[68] |
Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and niche of archaea in bioremediation. Archaea 2018;2018:3194108.
|
[69] |
Li XX, Mbadinga SM, Liu JF, Zhou L, Yang SZ, Gu JD, et al. Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. Int Biodeterior Biodegradation 2017;120:170‒85.
|
[70] |
WangLY, DuanRY, LiuJF, GuSZ, YangJD, MuBZ. Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences 2012;9 (11):4645‒59.
|
[71] |
Cheng L, Rui J, Li Q, Zhang H, Lu Y. Enrichment and dynamics of novel syntrophs in a methanogenic hexadecane-degrading culture from a Chinese oilfield. FEMS Microbiol Ecol 2013;83 (3):757‒66.
|
[72] |
Ji JH, Liu YF, Zhou L, Mbadinga SM, Pan P, Chen J, et al. Methanogenic degradation of long n-alkanes requires fumarate-dependent activation. Appl Environ Microbiol 2019;85 (16):1‒10.
|
[73] |
Savage KN, Krumholz LR, Gieg LM, Parisi VA, Suflita JM, Allen J, et al. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns. FEMS Microbiol Ecol 2010;72 (3):485‒95.
|
[74] |
Liang B, Wang LY, Zhou Z, Mbadinga SM, Zhou L, Liu JF, et al. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture. Front Microbiol 2016;7:1431.
|
[75] |
Liu JF, Zhang K, Liang B, Zhou ZC, Yang SZ, Li W, et al. Key players in the methanogenic biodegradation of n-hexadecane identified by DNA-stable isotope probing. Int Biodeterior Biodegradation 2019;143:104709.
|
[76] |
Neufeld JD, Dumont MG, Vohra J, Murrell JC. Methodological considerations for the use of stable isotope probing in microbial ecology. Microb Ecol 2007;53(3):435‒42.
|
[77] |
Mbadinga SM, Li KP, Zhou L, Wang LY, Yang SZ, Liu JF, et al. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir. Appl Microbiol Biotechnol 2012;96 (2):531‒42.
|
[78] |
Whitman WB, Bowen TL, Boone DR. The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The Prokaryotes. New York: Springer; 2006. p. 165‒207.
|
[79] |
Orsi WD. Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol 2018;16:671‒83.
|
/
〈 | 〉 |