Battery Safety: From Lithium-Ion to Solid-State Batteries
Received date: 01 Apr 2022
Published date: 24 Jan 2023
Xiqian Yu , Rusong Chen , Luyu Gan , Hong Li , Liquan Chen . Battery Safety: From Lithium-Ion to Solid-State Batteries[J]. Engineering, 2023 , 21(2) : 9 -14 . DOI: 10.1016/j.eng.2022.06.022
[1] |
Federal Consortium for Advanced Batteries. National blueprint for lithium batteries 2021–2030. Washington, DC: Federal Consortium for Advanced Batteries; 2021.
|
[2] |
Feng X, Ren D, He X, Ouyang M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020;4(4):743–70.
|
[3] |
Manthiram A, Yu XW, Wang SF. Lithium battery chemistries enabled by solidstate electrolytes. Nat Rev Mater 2017;2(4):16103.
|
[4] |
Kim MJ, Choi IH, Jo SC, Kim BG, Ha YC, Lee SM, et al. A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes. Small Methods 2021;5(11):2100793.
|
[5] |
Clement B, Lyu M, Kulkarni ES, Lin T, Hu Y, Lockett V, et al. Recent advances in printed thin-film batteries. Engineering 2022;13:238–61.
|
[6] |
Li Y, Gao Z, Hu F, Lin X, Wei Y, Peng J, et al. Advanced characterization techniques for interface in all-solid-state batteries. Small Methods 2020;4 (9):2000111.
|
[7] |
Maleki H, Deng G, Anani A, Howard J. Thermal stability studies of Li-ion cells and components. J Electrochem Soc 1999;146(9):3224–9.
|
[8] |
Wang H, Du Z, Rui X, Wang S, Jin C, He L, et al. A comparative analysis on thermal runaway behavior of Li(NixCoyMnz)O2 battery with different nickel contents at cell and module level. J Hazard Mater 2020;393:122361.
|
[9] |
Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 2018;10:246–67.
|
[10] |
Yao L, Wang ZP, Ma J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles. J Power Sources 2015;293:548–61.
|
[11] |
Abraham DP, Roth EP, Kostecki R, McCarthy K, MacLaren S, Doughty DH. Diagnostic examination of thermally abused high-power lithium-ion cells. J Power Sources 2006;161(1):648–57.
|
[12] |
Jin Y, Zheng Z, Wei D, Jiang X, Lu H, Sun L, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning. Joule 2020;4(8):1714–29.
|
[13] |
Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solidstate batteries. Chem Mater 2016;28(1):266–73.
|
[14] |
Wang Y, Zhang Q, Xue ZC, Yang L, Wang J, Meng F, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv Energy Mater 2020;10(28):2001413.
|
[15] |
Chen R, Nolan AM, Lu J, Wang J, Yu X, Mo Y, et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule 2020;4(4):812–21.
|
[16] |
Wang J, Chen R, Yang L, Zan M, Chen P, Li Y, et al. Raising the intrinsic safety of layered oxide cathodes by surface re-lithiation with LLZTO garnet-type solid electrolytes. Adv Mater 2022;34(19):2200655.
|
[17] |
Li Y, Feng X, Ren D, Ouyang M, Lu L, Han X. Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl Mater Interfaces 2019;11(50):46839–50.
|
[18] |
Jung KN, Shin HS, Park MS, Lee JW. Solid-state lithium batteries: bipolar design, fabrication, and electrochemistry. ChemElectroChem 2019;6(15):3842–59.
|
/
〈 | 〉 |